The Science of Nature

, 105:29 | Cite as

Fruit traits and temporal abundance shape plant-frugivore interaction networks in a seasonal tropical forest

  • Michelle Ramos-Robles
  • Wesley Dáttilo
  • Cecilia Díaz-Castelazo
  • Ellen Andresen
Original Paper


Interactions between fleshy fruited plants and frugivores are crucial for the structuring and functioning of biotic communities, particularly in tropical forests where both groups are diverse and play different roles in network organization. However, it remains poorly understood how different groups of frugivore species and fruit traits contribute to network structure. We recorded interactions among 28 plant species and three groups of frugivores (birds, bats, and non-flying mammals) in a seasonal forest in Mexico to determine which species contribute more to network structure and evaluate the importance of each species. We also determined whether fruit abundance, water content, morphology traits, and fruiting phenology are related to network parameters: the number of interactions, species contribution to nestedness, and species strength. We found that plants did not depend on a single group of frugivores, but rather on one species of each group: the bird Pitangus sulphuratus, the bat Sturnira parvidens, and the non-flying mammal Procyon lotor. The abundance, size, and water content of the fruits were significantly related to the contribution to nestedness, number of interactions, and species strength index of plant species. Tree species and birds contributed mainly to the nested structure of the network. We show that the structure of plant-frugivore networks in this seasonal forest is non-random and that fruit traits (i.e., abundance, phenology, size, and water content) are important factors shaping plant-frugivore networks. Identification of the key species and their traits that maintain the complex structure of species interactions is therefore fundamental for the integral conservation of tropical forests.


Frugivorous animals Network metrics Nestedness Phenology Species strength 



We thank Antonio López-Carretero for his help in the field and Javier Laborde for making invaluable suggestions on an early version of this manuscript. Thanks also go to Enrique Romero for his help with bird identification, Ángel Méndez for his help with camera trap installation, and to all the field assistants, as well as all the personnel working at Centro de Investigaciones Costeras, La Mancha.

Funding information

This work was partially funded by the following grants and institutions: Consejo Nacional de Ciencia y Tecnología (grant number 234062) to R.R.M. (project number 2010-152884), SEP-CONACYT to E. A., and Instituto de Ecología, A.C. (project number 2003011143) to CDC.

Supplementary material

114_2018_1556_MOESM1_ESM.docx (31 kb)
ESM 1 (DOCX 30 kb)


  1. Almazán-Núñez RC, Arizmendi MC, Eguiarte LE, Corcuera P (2015) Distribution of the community of frugivorous birds along a successional gradient in a tropical dry forest in south-western Mexico. J Trop Ecol 31:57–68. CrossRefGoogle Scholar
  2. Almeida-Neto M, Campassi F, Galetti M, Jordano P, Oliveira-Filho A (2008) Vertebrate dispersal syndromes along the Atlantic forest: broad-scale patterns and macroecological correlates. Glob Ecol Biogeogr 17:503–513. CrossRefGoogle Scholar
  3. Aranda M (2000) Huellas y otros rastros de los mamíferos grandes y medianos de México. Instituto de Ecología, A.C., VeracruzGoogle Scholar
  4. Atmar W, Patterson BD (1993) The measure of order and disorder in the distribution of species in fragmented habitat. Oecologia 96:373–382. CrossRefPubMedGoogle Scholar
  5. Bascompte J, Jordano P (2006) The structure of plant-animal mutualistic networks. In: Pascual MaD J (ed) Ecological networks. Oxford University Press, Oxford, pp 143–159Google Scholar
  6. Bascompte J, Jordano P (2007) Plant-animal mutualistic networks: the architecture of biodiversity. Annu Rev Ecol Evol 38:567–593. CrossRefGoogle Scholar
  7. Bascompte J, Jordano P, Melian CJ, Olesen JM (2003) The nested assembly of plant–animal mutualistic networks. Proc Natl Acad Sci USA 100:9383–9387. CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bascompte J, Jordano P et al (2006) The ecological consequences of complex topology and nested structure in pollination webs. University of Chicago Press, ChicagoGoogle Scholar
  9. Bastolla U, Fortuna MA, Pascual-Garcia A, Ferrera A, Luque B, Bascompte J (2009) The architecture of mutualistic networks minimizes competition and increases biodiversity. Nature 458:1018–1020. CrossRefPubMedGoogle Scholar
  10. Blendinger PG, Martín E, Osinaga Acosta O, Ruggera RA, Aráoz E (2016) Fruit selection by Andean forest birds: influence of fruit functional traits and their temporal variation. Biotropica 48:677–686. CrossRefGoogle Scholar
  11. Carlo TA, Aukema JE, et al (2007) Plant–frugivore interactions as spatially explicit networks: integrating frugivore foraging with fruiting plant spatial patterns. In: Dennis (ed) Seed dispersal: theory and its application in a changing world. p 369–390Google Scholar
  12. Castillo S, Carabias J (1982) Ecología de la vegetación de dunas costeras: fenología. Biotica 7:551–568Google Scholar
  13. Ceballos G, Ehrlich PR, Barnosky AD, Garcia A, Pringle RM, Palmer TM (2015) Accelerated modern human–induced species losses: entering the sixth mass extinction. Sci Adv 1:e1400253. CrossRefPubMedPubMedCentralGoogle Scholar
  14. Chama L, Berens DG, Downs CT, Farwig N (2013) Habitat characteristics of forest fragments determine specialisation of plant-frugivore networks in a mosaic forest landscape. PLoS One 8:e54956. CrossRefPubMedPubMedCentralGoogle Scholar
  15. Chiarucci A, Enright NJ, Perry GLW, Miller BP, Lamont BB (2003) Performance of nonparametric species richness estimators in a high diversity plant community. Divers Distrib 9:283–295. CrossRefGoogle Scholar
  16. Christensen AF (2000) The fifteenth-and twentieth-century colonization of the Basin of Mexico by the great-tailed grackle (Quiscalus mexicanus). Glob Ecol Biogeogr 9:415–420. CrossRefGoogle Scholar
  17. Cypher BL, Cypher EA (1999) Germination rates of tree seeds ingested by coyotes and raccoons. Am Midl Nat 142:71–76.[0071:grotsi];2Google Scholar
  18. Dáttilo W, Guimarães PR et al (2013) Spatial structure of ant-plant mutualistic networks. Oikos 122:1643–1648. CrossRefGoogle Scholar
  19. Dáttilo W, Marquitti FM, Guimarães PR Jr, Thiago IJ (2014) The structure of ant–plant ecological networks: is abundance enough? Ecology 95:475–485. CrossRefPubMedGoogle Scholar
  20. Dáttilo W, Lara-Rodríguez N, Jordano P, Guimarães PR Jr, Thompson JN, Marquis RJ, Medeiros LP, Ortiz-Pulido R, Marcos-García MA, Rico-Gray V (2016) Unravelling Darwin’s entangled bank: architecture and robustness of mutualistic networks with multiple interaction types. Proc R Soc Lond B Biol Sci 283:2016–1564. CrossRefGoogle Scholar
  21. David JP, Manakadan R et al (2015) Frugivory and seed dispersal by birds and mammals in the coastal tropical dry evergreen forests of southern India: a review. Trop Ecol 56:41–55Google Scholar
  22. Dehling DM, Töpfer T, Schaefer HM, Jordano P, Böhning-Gaese K, Schleuning M (2014) Functional relationships beyond species richness patterns: trait matching in plant–bird mutualisms across scales. Glob Ecol Biogeogr 23:1085–1093. CrossRefGoogle Scholar
  23. Dehling DM, Jordano P, Schaefer HM, Böhning-Gaese K, Schleuning M (2016) Morphology predicts species’ functional roles and their degree of specialization in plant-frugivore interactions. Proc Biol Sci 283:1823. CrossRefGoogle Scholar
  24. Díaz Vélez MC, Silva WR, Pizo MA, Galetto L (2015) Movement patterns of frugivorous birds promote functional connectivity among Chaco Serrano woodland fragments in Argentina. Biotropica 47:475–483. CrossRefGoogle Scholar
  25. Diaz-Martin Z, Swamy V, Terborgh J, Alvarez-Loayza P, Cornejo F (2014) Identifying keystone plant resources in an Amazonian forest using a long-term fruit-fall record. J Trop Ecol 30:291–301. CrossRefGoogle Scholar
  26. Dirzo R, Miranda A (1991) Altered patterns of herbivory and diversity forest understory: a case study possible consequences of contemporary defaunations. In: Price PW, Lewinshon TM, Fernandes GW, Benson WW (eds) Plant-animal interactions: evolutionary ecology in tropical and temperate regions. Wiley, New York, pp 273–287Google Scholar
  27. Donatti CI, Guimarães PR, Galetti M, Pizo MA, Marquitti FMD, Dirzo R (2011) Analysis of a hyper-diverse seed dispersal network: modularity and underlying mechanisms. Ecol Lett 14:773–781. CrossRefPubMedGoogle Scholar
  28. Donoso I, Schleuning M, García D, Fründ J (2017) Defaunation effects on plant recruitment depend on size matching and size trade-offs in seed-dispersal networks. Proc R Soc Lond B Biol Sci 284:2016–2664. CrossRefGoogle Scholar
  29. Dormann CF, Fründ J et al (2009) Indices, graphs and null models: analyzing bipartite ecological networks. Open Ecol J 2:7–24CrossRefGoogle Scholar
  30. Farwig N, Berens DG (2012) Imagine a world without seed dispersers: a review of threats, consequences and future directions. Basic Appl Ecol 13:109–115. CrossRefGoogle Scholar
  31. Fleming TH (1988) The short-tailed fruit bat: a study in plant-animal interactions. University of Chicago Press, ChicagoGoogle Scholar
  32. Fleming TH, Kress WJ (2013) The ornaments of life: coevolution and conservation in the tropics. University of Chicago Press, ChicagoCrossRefGoogle Scholar
  33. Galetti M, Pizo MA, Cerdeira MLP (2011) Diversity of functional traits of fleshy fruits in a species-rich Atlantic rain forest. Biota Neotrop 11:181–194. CrossRefGoogle Scholar
  34. Galetti M, Guevara R, Cortes MC, Fadini R, von Matter S, Leite AB, Labecca F, Ribeiro T, Carvalho CS, Collevatti RG, Pires MM, Guimaraes PR, Brancalion PH, Ribeiro MC, Jordano P (2013) Functional extinction of birds drives rapid evolutionary changes in seed size. Science 340:1086–1090. CrossRefPubMedGoogle Scholar
  35. Galindo-González J, Vázquez-Domínguez G, Saldaña-Vázquez RA, Hernández-Montero JR (2009) A more efficient technique to collect seeds dispersed by bats. J Trop Ecol 25:205–209. CrossRefGoogle Scholar
  36. García E (1981) Modificaciones al sistema de clasificación climática de Köppen. Instituto de Geografía, Universidad Nacional Autónoma de México, México, D.FGoogle Scholar
  37. García D, Martínez D, Stouffer DB, Tylianakis JM (2014) Exotic birds increase generalization and compensate for native bird decline in plant-frugivore assemblages. J Anim Ecol 83:1441–1450. CrossRefPubMedGoogle Scholar
  38. Guimarães PR Jr, Guimarães P (2006) Improving the analyses of nestedness for large sets of matrices. Environ Model Softw 21:1512–1513. CrossRefGoogle Scholar
  39. Guimarães PR Jr, Jordano P, Thompson JN (2011) Evolution and coevolution in mutualistic networks. Ecol Lett 14:877–885. CrossRefPubMedGoogle Scholar
  40. Heleno R, Lacerda I, Ramos JA, Memmott J (2010) Evaluation of restoration effectiveness: community response to the removal of alien plants. Ecol Appl 20:1191–1203. CrossRefPubMedGoogle Scholar
  41. Herrera CM (1982) Seasonal variation in the quality of fruits and diffuse coevolution between plants and avian. Ecology 63:773–785. CrossRefGoogle Scholar
  42. Howell SNG, Webb S (1995) A guide to the birds of Mexico and northern Central America. Oxford University Press, Chicago, U.S.Google Scholar
  43. Janzen DH (1979) How to be a fig. Annu Rev Ecol Syst 10:13–51. CrossRefGoogle Scholar
  44. Jordano P (1987) Frugivory, external morfology and digestive system in mediterranean sylviid warblers Sylvia spp. Ibis 129:173–189. Google Scholar
  45. Levey DJ, Moermond TC et al (1994) Frugivory: an overview. In: McDade LA, Bawa KS, Hespenheide HA, Hartshorn GS (eds) La Selva: ecology and natural history of a Neotropical Rain Forest. University of Chicago Press, Chicago, pp 282–294Google Scholar
  46. Martínez ML, García-Franco JG, et al (2006) Las adaptaciones y las interacciones de especies. In: Moreno-Casasola P (ed) Entornos Veracruzanos: La costa de La Mancha. Instituto de Ecología, A. C., Xalapa, Veracruz, México, pp 273–283Google Scholar
  47. Medellín RA, Azuara D, et al. (2006) Censos y monitoreos. In: Chávez C and Ceballos G (eds) Memorias del primer simposio El jaguar mexicano en el siglo XXI: situación actual y manejo CONABIO/Alianza WWF-Telcel/UNAM, México, D.F., pp 25–35Google Scholar
  48. Medellín RA, Arita HT, et al. (2008) Identificación de los murciélagos de México: clave de campo. Asociación Mexicana de Mastozoología., D.F., MéxicoGoogle Scholar
  49. Mello MAR, Kalko EKV, Silva WR (2008) Movements of the bat Sturnira lilium and its role as a seed disperser of Solanaceae in the Brazilian Atlantic forest. J Trop Ecol 24:225–228. CrossRefGoogle Scholar
  50. Mello MAR, Marquitti FMD, Guimarães PR Jr, Kalko EKV, Jordano P, de Aguiar MAM (2011) The missing part of seed dispersal networks: structure and robustness of bat-fruit interactions. PLoS One 6:e17395. CrossRefPubMedPubMedCentralGoogle Scholar
  51. Mello MAR, Rodrigues FA, Costa LF, Kissling WD, Şekercioğlu ÇH, Marquitti FMD, Kalko EKV (2015) Keystone species in seed dispersal networks are mainly determined by dietary specialization. Oikos 124:1031–1039. CrossRefGoogle Scholar
  52. Morales Mávil JE, Guzmán S (1994) Fauna silvestre de la zona de La Mancha, Veracruz, México. La Ciencia y el Hombre 16:77–103Google Scholar
  53. Mulwa RK, Neuschulz EL, Böhning-Gaese K, Schleuning M (2013) Seasonal fluctuations of resource abundance and avian feeding guilds across forest-farmland boundaries in tropical Africa. Oikos 122:524–532. CrossRefGoogle Scholar
  54. Muñoz MC, Schaefer HM, Böhning-Gaese K, Schleuning M (2017) Importance of animal and plant traits for fruit removal and seedling recruitment in a tropical forest. Oikos 126:823–832. CrossRefGoogle Scholar
  55. Ortiz-Pulido R, Laborde J, Guevara S (2000) Frugivoría por aves en un paisaje fragmentado: consecuencias de la dispersión de semillas. Biotropica 32:473–488. Google Scholar
  56. Ortiz-Pulido R, Albores-Barajas YV, Díaz SA (2006) Fruit removal efficiency and success: influence of crop size in a neotropical treelet. Plant Ecol 189:147–154. CrossRefGoogle Scholar
  57. Palacio RD, Valderrama-Ardila C, Kattan GH (2016) Generalist species have a central role in a highly diverse plant-frugivore network. Biotropica 48:349–355. CrossRefGoogle Scholar
  58. Pawar S (2014) Ecology. Why are plant-pollinator networks nested? Science 345:383. CrossRefPubMedGoogle Scholar
  59. Peredo A, Martínez D, Rodríguez-Pérez J, García D (2013) Mammalian seed dispersal in Cantabrian woodland pastures: network structure and response to forest loss. Basic Appl Ecol 14:378–386. CrossRefGoogle Scholar
  60. Peterson RT and Chalif EL (1989) Aves de México. Diana, México, D.FGoogle Scholar
  61. Posa MRC, Sodhi NS (2006) Effects of anthropogenic land use on forest birds and butterflies in Subic Bay, Philippines. Biol Conserv 129:256–270. CrossRefGoogle Scholar
  62. Ramos-Robles M, Andresen E, Díaz-Castelazo C (2016) Temporal changes in the structure of a plant-frugivore network are influenced by bird migration and fruit availability. Peer J 4:e2048. CrossRefPubMedPubMedCentralGoogle Scholar
  63. Ramos-Robles M, Andresen E, Díaz-Castelazo C (2018) Modularity and robustness of a plant-frugivore interaction network in a disturbed tropical forest. Ecoscience:1–14.
  64. Rohr RP, Saavedra S, Bascompte J (2014) Ecological networks. On the structural stability of mutualistic systems. Science 345:1253497. CrossRefPubMedGoogle Scholar
  65. Ruggera RA, Blendinger PG, Gomez MD, Marshak C (2016) Linking structure and functionality in mutualistic networks: do core frugivores disperse more seeds than peripheral species? Oikos 125:541–555. CrossRefGoogle Scholar
  66. Saavedra S, Stouffer DB, Uzzi B, Bascompte J (2011) Strong contributors to network persistence are the most vulnerable to extinction. Nature 478:233–235. CrossRefPubMedGoogle Scholar
  67. Saldaña-Vázquez RA, Sosa VJ, Hernández-Montero JR, López-Barrera F (2010) Abundance responses of frugivorous bats (Stenodermatinae) to coffee cultivation and selective logging practices in mountainous central Veracruz, México. Biodivers Conserv 19:2111–2124. CrossRefGoogle Scholar
  68. Saracco JF, Collazo JA, Groom MJ (2004) How do frugivores track resources? Insights from spatial analyses of bird foraging in a tropical forest. Oecologia 139:235–245. CrossRefPubMedGoogle Scholar
  69. Sarmento R, Alves-Costa CP, Ayub A, Mello MAR (2014) Partitioning of seed dispersal services between birds and bats in a fragment of the Brazilian Atlantic Forest. Zoologia (Curitiba) 31:245–255. CrossRefGoogle Scholar
  70. Schleuning M, Fründ J, García D (2015) Predicting ecosystem functions from biodiversity and mutualistic networks: an extension of trait-based concepts to plant-animal interactions. Ecography 38:380–392. CrossRefGoogle Scholar
  71. Schupp EW, Jordano P, Gómez JM (2010) Seed dispersal effectiveness revisited: a conceptual review. New Phytol 188:333–353. CrossRefPubMedGoogle Scholar
  72. Scott PE, Martin RF (1984) Avian consumers of Bursera, Ficus, and Ehretia fruit in Yucatan. Biotropica 16:319–323. CrossRefGoogle Scholar
  73. Stapanian MA (1982) Evolution of fruiting strategies among fleshy-fruited plant species of eastern Kansas. Ecology 63:1422–1431. CrossRefGoogle Scholar
  74. Team RC (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Accessed November 2016
  75. Terborgh J (1986) Keystone plant resources in the tropical forest. In: Soulé ME (ed) Conservation biology, the science of scarcity and diversity. Sinauer Associates, Massachusetts, USA, pp 330–344Google Scholar
  76. Thies W, Kalko EK, Schnitzler H-U (1998) The roles of echolocation and olfaction in two Neotropical fruit-eating bats, Carollia perspicillata and C. castanea, feeding on Piper. Behav Ecol Sociobiol 42:397–409. CrossRefGoogle Scholar
  77. Traveset A, Richardson DM (2014) Mutualistic interactions and biological invasions. Annu Rev Ecol Evol Syst 45:89–113. CrossRefGoogle Scholar
  78. Travieso-Bello AC (2000) Biodiversidad del paisaje costero de La Mancha, Actopan, Veracruz. Instituto de Ecología, A. CGoogle Scholar
  79. Tylianakis JM, Laliberté E, Nielsen A, Bascompte J (2010) Conservation of species interaction networks. Biol Conserv 143:2270–2279. CrossRefGoogle Scholar
  80. Vázquez DP, Melián CJ, Williams NM, Blüthgen N, Krasnov BR, Poulin R (2007) Species abundance and asymmetric interaction strength in ecological networks. Oikos 116:1120–1127. CrossRefGoogle Scholar
  81. Vázquez DP, Blüthgen N, Cagnolo L, Chacoff NP (2009) Uniting pattern and process in plant-animal mutualistic networks: a review. Ann Bot 103:1445–1457. CrossRefPubMedPubMedCentralGoogle Scholar
  82. Vidal MM, Pires MM, Guimarães PR (2013) Defaunation’s impact in tropical terrestrial ecosystems. Biol Conserv 163:42–48. CrossRefGoogle Scholar
  83. Vidal MM, Hasui E, Pizo MA, Tamashiro JY, Silva WR, Guimaraes JPR (2014) Frugivores at higher risk of extinction are the key elements of a mutualistic network. Ecology 95:3440–3447. CrossRefGoogle Scholar
  84. Zuur A, Ieno E, Walker N, Saveliev A, Smith G (2009) Mixed effects models and extensions in ecology with R. Spring Science and Business Media. Springer, New YorkCrossRefGoogle Scholar
  85. Zuur AF, Ieno EN, Elphick CS (2010) A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol 1:3–14. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Michelle Ramos-Robles
    • 1
    • 2
  • Wesley Dáttilo
    • 3
  • Cecilia Díaz-Castelazo
    • 1
  • Ellen Andresen
    • 4
  1. 1.Red de Interacciones MultitróficasInstituto de Ecología, A. C.XalapaMexico
  2. 2.Centro de Investigación en Biodiversidad y ConservaciónUniversidad Autónoma del Estado de MorelosCuernavacaMexico
  3. 3.Red de EcoetologíaInstituto de Ecología, A. C., XalapaXalapaMexico
  4. 4.Instituto de Investigaciones en Ecosistemas y SustentabilidadUniversidad Nacional Autónoma de MéxicoMoreliaMexico

Personalised recommendations