Advertisement

The Science of Nature

, 105:24 | Cite as

Identification of a melatonin receptor type 1A gene (AccMTNR1A) in Apis cerana cerana and its possible involvement in the response to low temperature stress

  • Guilin Li
  • Yanming Zhang
  • Yong Ni
  • Ying Wang
  • Baohua Xu
  • Xingqi Guo
Original Paper

Abstract

It is known that melatonin plays an indispensable role in the defense against some environment-induced stresses. The melatonin receptor (MTNR) is also closely linked to the environmental stress response in mammals. However, little is known about the function of the MTNR in insects, including honeybees. In this study, we identified a MTNR from Apis cerana cerana named AccMTNR1A, which contained a typical seven-transmembrane domain common to this family of receptors. A subcellular localization analysis showed that AccMTNR1A was localized in the cytomembrane. Additionally, we found that cold stress apparently boosted AccMTNR1A transcription, indicating that AccMTNR1A possibly connects to the cold stress response. The knockdown of AccMTNR1A attenuated the expression level of some genes associated with the cold stress response, suggesting that AccMTNR1A likely plays an analogous role with these genes during low temperature stress response. Moreover, silencing of AccMTNR1A also suppressed the transcription of some antioxidant genes, prompting the possibility that the response of AccMTNR1A to cold stress response may be related to antioxidant signaling pathways. Collectively, the findings presented here provide evidence that AccMTNR1A may play essential roles in protecting Apis cerana cerana from cold stress.

Keywords

Apis cerana cerana Melatonin receptor Cold stress Oxidative injury Expression level RNA interference 

Notes

Funding information

This work was financially supported by the earmarked fund for the China Agriculture Research System (No. CARS-45), the National Natural Science Foundation of China (No. 31572470), the Shandong Province Modern Agricultural Technology System Innovation Team Special Fund (No. SDAIT-24-04), and the Shandong Province Fine Varieties Breeding Project (2014-2016).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

114_2018_1546_Fig8_ESM.gif (188 kb)
Fig. S1

Characterization of MTNRs from different species and putative seven-transmembrane domain of AccMTNR1A. a, Multiple amino acid sequence alignments of AccMTNR1A from Apis cerana cerana and AmMTNR1B from Apis mellifera and AfMTNR1A from Apis florea. The protein sequences of aforementioned MTNRs were downloaded from the National Center for Biotechnology Information. Identical regions are labeled in black. The predicted secondary structure of AccMTNR1A is shaded in arrows. b, The possible seven-transmembrane domain of AccMTNR1A (GIF 188 kb)

114_2018_1546_MOESM1_ESM.tif (16.7 mb)
High Resolution Image (TIFF 17062 kb)
114_2018_1546_MOESM2_ESM.doc (14 kb)
Table S1 (DOC 13 kb)
114_2018_1546_MOESM3_ESM.doc (120 kb)
Table S2 (DOC 119 kb)
114_2018_1546_MOESM4_ESM.doc (38 kb)
Table S3 (DOC 37 kb)
114_2018_1546_MOESM5_ESM.doc (69 kb)
Table S4 (DOC 69 kb)
114_2018_1546_MOESM6_ESM.doc (104 kb)
Table S5 (DOC 104 kb)

References

  1. Acharjee S, Singh SS (2014) Expression of heat shock proteins (HSP70 & HSC70) and responsiveness of melatonin receptors (MT11 & MT2) in spleen of Swiss albino mice subjected to hyperthermic stress condition. Int J Pharm Bio Sci 5:B801–B814Google Scholar
  2. Adamczyk-Sowa M, Sowa P, Zwirska-Korczala K, Pierzchala K, Bartosz G, Sadowska-Bartosz I (2013) Role of melatonin receptor MT(2) and quinone reductase II in the regulation of the redox status of 3T3-L1 preadipocytes in vitro. Cell Biol Int 37:835–842.  https://doi.org/10.1002/cbin.10105 CrossRefPubMedGoogle Scholar
  3. Allegra M, Reiter RJ, Tan DX, Gentile C, Tesoriere L, Livrea MA (2003) The chemistry of melatonin’s interaction with reactive species. J Pineal Res 34:1–10CrossRefPubMedGoogle Scholar
  4. Antolin I et al (1996) Neurohormone melatonin prevents cell damage: effect on gene expression for antioxidant enzymes. FASEB J 10:882–890CrossRefPubMedGoogle Scholar
  5. Bahr I, Muhlbauer E, Schucht H, Peschke E (2011) Melatonin stimulates glucagon secretion in vitro and in vivo. J Pineal Res 50:336–344.  https://doi.org/10.1111/j.1600-079X.2010.00848.x CrossRefPubMedGoogle Scholar
  6. Bertsy Goic NV, Mondotte JA, Monot C, Frangeul L, Blanc H, Gausson V, Vera-Otarola J, Cristofari G, Saleh M-C (2013) RNA-mediated interference and reverse transcription control the persistence of RNA viruses in the insect model Drosophila. Nat Immunol 14:396–403.  https://doi.org/10.1038/ni.2542 CrossRefPubMedGoogle Scholar
  7. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622.  https://doi.org/10.1373/clinchem.2008.112797 CrossRefPubMedGoogle Scholar
  8. Chen X, Yao P, Chu X, Hao L, Guo X, Xu B (2015) Isolation of arginine kinase from Apis cerana cerana and its possible involvement in response to adverse stress. Cell Stress Chaperones 20:169–183.  https://doi.org/10.1007/s12192-014-0535-2 CrossRefPubMedGoogle Scholar
  9. Cheng SL (2001) The apicultural science in China. China Agriculture Press, ChinaGoogle Scholar
  10. Choi SI, Dadakhujaev S, Ryu H, Im Kim T, Kim EK (2011) Melatonin protects against oxidative stress in granular corneal dystrophy type 2 corneal fibroblasts by mechanisms that involve membrane melatonin receptors. J Pineal Res 51:94–103.  https://doi.org/10.1111/j.1600-079X.2011.00866.x CrossRefPubMedGoogle Scholar
  11. Colinet H, Lee SF, Hoffmann A (2010) Temporal expression of heat shock genes during cold stress and recovery from chill coma in adult Drosophila melanogaster. FEBS J 277:174–185.  https://doi.org/10.1111/j.1742-4658.2009.07470.x CrossRefPubMedGoogle Scholar
  12. Das A, McDowell M, Pava MJ, Smith JA, Reiter RJ, Woodward JJ, Varma AK, Ray SK, Banik NL (2010) The inhibition of apoptosis by melatonin in VSC4.1 motoneurons exposed to oxidative stress, glutamate excitotoxicity, or TNF-alpha toxicity involves membrane melatonin receptors. J Pineal Res 48:157–169.  https://doi.org/10.1111/j.1600-079X.2009.00739.x CrossRefPubMedPubMedCentralGoogle Scholar
  13. Dietemann V, Ellis JD, Neumann P (2013) The coloss beebook volume i, standard methods for apis mellifera research: introduction. J Apic Res 52:1–4Google Scholar
  14. Dubocovich ML (1995) Melatonin receptors: are there multiple subtypes? Trends Pharmacol Sci 16:50–56CrossRefPubMedGoogle Scholar
  15. Dubocovich ML, Markowska M (2005) Functional MT 1, and MT 2, melatonin receptors in mammals. Endocrine 27:101–110CrossRefPubMedGoogle Scholar
  16. Even N, Devaud JM, Barron AB (2012) General stress responses in the honey bee. Insects 3:1271–1298.  https://doi.org/10.3390/insects3041271 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Fujita J (1999) Cold shock response in mammalian cells. J Mol Microbiol Biotechnol 1:243–255PubMedGoogle Scholar
  18. Hai wei XU, Hai di LI, Fan XT, Xuan WU, Cao J, Tang J (2003) Effects of sodium azide injected chronically on the learning and memory and the expression of melatonin receptors in the hippocampus of rats Acta Academiae Medicinae Militaris TertiaeGoogle Scholar
  19. Hardeland R, Pandi-Perumal SR (2005) Melatonin, a potent agent in antioxidative defense: actions as a natural food constituent, gastrointestinal factor, drug and prodrug. Nutr Metab 2:22.  https://doi.org/10.1186/1743-7075-2-22 CrossRefGoogle Scholar
  20. Honeybee Genome Sequencing C (2006) Insights into social insects from the genome of the honeybee Apis mellifera. Nature 443:931–949CrossRefGoogle Scholar
  21. Huaxia Y, Wang F, Yan Y, Liu F, Wang H, Guo X, Xu B (2015) A novel 1-Cys thioredoxin peroxidase gene in Apis cerana cerana: characterization of AccTpx4 and its role in oxidative stresses. Cell Stress Chaperones 20:663–672.  https://doi.org/10.1007/s12192-015-0594-z CrossRefPubMedPubMedCentralGoogle Scholar
  22. Ivashuta S, Zhang Y, Wiggins BE, Ramaseshadri P, Segers GC, Johnson S, Meyer SE, Kerstetter RA, McNulty BC, Bolognesi R, Heck GR (2015) Environmental RNAi in herbivorous insects. RNA 21:840–850.  https://doi.org/10.1261/rna.048116.114 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Jia H, Sun R, Shi W, Yan Y, Li H, Guo X, Xu B (2014) Characterization of a mitochondrial manganese superoxide dismutase gene from Apis cerana cerana and its role in oxidative stress. J Insect Physiol 60:68–79.  https://doi.org/10.1016/j.jinsphys.2013.11.004 CrossRefPubMedGoogle Scholar
  24. Jones C, Helfer G, Brandstatter R (2012) Melatonin receptor expression in the zebra finch brain and peripheral tissues. Chronobiol Int 29:189–202.  https://doi.org/10.3109/07420528.2011.642912 CrossRefPubMedGoogle Scholar
  25. Kaushik S, Kaur J (2003) Chronic cold exposure affects the antioxidant defense system in various rat tissues. Clin Chim Acta Int J Clin Chem 333:69–77CrossRefGoogle Scholar
  26. Kerr JT, Pindar A, Galpern P, Packer L, Potts SG, Roberts SM, Rasmont P, Schweiger O, Colla SR, Richardson LL, Wagner DL, Gall LF, Sikes DS, Pantoja A (2015) CLIMATE CHANGE. Climate change impacts on bumblebees converge across continents. Science 349:177–180.  https://doi.org/10.1126/science.aaa7031 CrossRefPubMedGoogle Scholar
  27. Kim TK, Kleszczyński K, Janjetovic Z, Sweatman T, Lin Z, Li W, Reiter RJ, Fischer TW, Slominski AT (2013) Metabolism of melatonin and biological activity of intermediates of melatoninergic pathway in human skin cells. FASEB J 27:2742–2755.  https://doi.org/10.1096/fj.12-224691 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Klowden MJ (2008) Physiological systems in insects. Science press, ChinaGoogle Scholar
  29. Lerner AB, Case JD, Takahashi Y, Lee TH, Mori W (1958) Isolation of melatonin, the pineal gland factor that lightens melanocytes1. J Am Chem Soc 80:2587CrossRefGoogle Scholar
  30. Li G, Jia H, Wang H, Yan Y, Guo X, Sun Q, Xu B (2016) A typical RNA-binding protein gene (AccRBM11) in Apis cerana cerana: characterization of AccRBM11 and its possible involvement in development and stress responses. Cell Stress Chaperones 21:1005–1019.  https://doi.org/10.1007/s12192-016-0725-1 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Liu L, Yu X, Meng F, Guo X, Xu B (2011) Identification and characterization of a novel corticotropin-releasing hormone-binding protein (CRH-BP) gene from Chinese honeybee (Apis cerana cerana). Arch Insect Biochem Physiol 78:161–175.  https://doi.org/10.1002/arch.20451 CrossRefPubMedGoogle Scholar
  32. Liu F, Gong Z, Zhang W, Wang Y, Ma L, Wang H, Guo X, Xu B (2015) Identification and characterization of a novel methionine sulfoxide reductase B gene (AccMsrB) from Apis cerana cerana (hymenoptera: apidae). Ann Entomol Soc Am 108:575–584CrossRefGoogle Scholar
  33. Liu S, Liu F, Jia H, Yan Y, Wang H, Guo X, Xu B (2016) A glutathione S-transferase gene associated with antioxidant properties isolated from Apis cerana cerana. Die Naturwissenschaften 103:43.  https://doi.org/10.1007/s00114-016-1362-3 CrossRefPubMedGoogle Scholar
  34. Lourenço AP, Mackert A, Cristino ADS, Simões ZLP (2008) Validation of reference genes for gene expression studies in the honey bee, Apis mellifera, by quantitative real-time RT-PCR. Apidologie 39:372–385CrossRefGoogle Scholar
  35. Lu W, Kang M, Liu X, Zhao X, Guo X, Xu B (2012) Identification and antioxidant characterisation of thioredoxin-like1 from Apis cerana cerana. Apidologie 43:737–752CrossRefGoogle Scholar
  36. MacMillan HA, Baatrup E, Overgaard J (2015) Concurrent effects of cold and hyperkalaemia cause insect chilling injury. Proc Biol Sci 282:20151483.  https://doi.org/10.1098/rspb.2015.1483 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Maitra SK, Hasan KN (2016) The role of melatonin as a hormone and an antioxidant in the control of fish reproduction. Front Endocrinol 7:38.  https://doi.org/10.3389/fendo.2016.00038 CrossRefGoogle Scholar
  38. Meng F, Zhang L, Kang M, Guo X, Xu B (2010) Molecular characterization, immunohistochemical localization and expression of a ribosomal protein L17 gene from Apis cerana cerana. Arch Insect Biochem Physiol 75:121–138.  https://doi.org/10.1002/arch.20386 CrossRefPubMedGoogle Scholar
  39. Meng F, Zhang Y, Liu F, Guo X, Xu B (2014) Characterization and mutational analysis of omega-class GST (GSTO1) from Apis cerana cerana, a gene involved in response to oxidative stress. PLoS One 9:e93100.  https://doi.org/10.1371/journal.pone.0093100 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Morgan PJ, Barrett P, Howell HE, Helliwell R (1994) Melatonin receptors: localization, molecular pharmacology and physiological significance. Neurochem Int 24:101–146CrossRefPubMedGoogle Scholar
  41. Mukherjee A, Haldar C (2015) Melatonin membrane receptor (MT1R) expression and nitro-oxidative stress in testis of golden hamster, Mesocricetus auratus: an age-dependent study. Exp Gerontol 69:211–220.  https://doi.org/10.1016/j.exger.2015.06.022 CrossRefPubMedGoogle Scholar
  42. Nosjean O, Ferro M, Cogé F, Beauverger P, Henlin JM, Lefoulon F, Fauchère JL, Delagrange P, Canet E, Boutin JA (2000) Identification of the melatonin-binding site MT3 as the quinone reductase 2. J Biol Chem 275:31311–31317.  https://doi.org/10.1074/jbc.M005141200 CrossRefPubMedGoogle Scholar
  43. Oldroyd B, Wongsiri S (2006) Asian honey bees: biology, conservation, and human interactions. Harvard University Press, CambridgeGoogle Scholar
  44. Olegario JG, Silva MV, Machado JR, Rocha LP, Reis MA, Guimaraes CS, Correa RR (2013) Pulmonary innate immune response and melatonin receptors in the perinatal stress. Clin Dev Immun 2013:340959.  https://doi.org/10.1155/2013/340959 Google Scholar
  45. Park Y, Kim Y (2013) RNA interference of glycerol biosynthesis suppresses rapid cold hardening of the beet armyworm, Spodoptera exigua. J Exp Biol 216:4196–4203.  https://doi.org/10.1242/jeb.092031 CrossRefPubMedGoogle Scholar
  46. Park D, Jung JW, Choi BS, Jayakodi M, Lee J, Lim J, Yu Y, Choi YS, Lee ML, Park Y, Choi IY, Yang TJ, Edwards OR, Nah G, Kwon HW (2015) Uncovering the novel characteristics of Asian honey bee, Apis cerana, by whole genome sequencing. BMC Genomics 16:1.  https://doi.org/10.1186/1471-2164-16-1 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Peng YS (1987) The resistance mechanism of the Asian honey bee, Apis cerana Fabr., to an ectoparasitic mite, Varroa jacobsoni Oudemans. J Invertebr Pathol 49:54–60CrossRefGoogle Scholar
  48. Perry CJ, Søvik E, Myerscough MR, Barron AB (2015) From the cover: rapid behavioral maturation accelerates failure of stressed honey bee colonies. Proc Natl Acad Sci U S A 112:3427–3432CrossRefPubMedPubMedCentralGoogle Scholar
  49. Qin Z, Wang S, Wei P, Xu CD, Tang B, Zhang F (2012) Molecular cloning and cold-induced expression of trehalose-6-phosphate synthase gene in harmonia axyridis (coleoptera: coccinellidae). Acta Entomol Sin 55:651–658Google Scholar
  50. Reiter RJ, Tan DX, Terron MP, Flores LJ, Czarnocki Z (2007) Melatonin and its metabolites: new findings regarding their production and their radical scavenging actions. Acta Biochim Pol 54:1–9PubMedGoogle Scholar
  51. Rodriguez C, Mayo JC, Sainz RM, Antolin I, Herrera F, Martin V, Reiter RJ (2004) Regulation of antioxidant enzymes: a significant role for melatonin. J Pineal Res 36:1–9CrossRefPubMedGoogle Scholar
  52. Rosen RB, Hu DN, Chen M, McCormick SA, Walsh J, Roberts JE (2012) Effects of melatonin and its receptor antagonist on retinal pigment epithelial cells against hydrogen peroxide damage. Mol Vis 18:1640–1648PubMedPubMedCentralGoogle Scholar
  53. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3:1101–1108CrossRefPubMedGoogle Scholar
  54. Selman C, McLaren JS, Himanka MJ, Speakman JR (2000) Effect of long-term cold exposure on antioxidant enzyme activities in a small mammal. Free Radic Biol Med 28:1279–1285CrossRefPubMedGoogle Scholar
  55. Shi W, Sun J, Xu B, Li H (2013) Molecular characterization and oxidative stress response of a cytochrome P450 gene (CYP4G11) from Apis cerana cerana Zeitschrift fur Naturforschung C. J Biosci 68:509–521Google Scholar
  56. Shi Z, Liu X, Xu Q, Qin Z, Wang S, Zhang F, Wang S, Tang B (2016) Two novel soluble trehalase genes cloned from Harmonia axyridis and regulation of the enzyme in a rapid changing temperature. Comp Biochem Physiol B Biochem Mol Biol 198:10–18.  https://doi.org/10.1016/j.cbpb.2016.03.002 CrossRefPubMedGoogle Scholar
  57. Shin EJ, Chung YH, le HLT, Jeong JH, Dang DK, Nam Y, Wie MB, Nah SY, Nabeshima YI, Nabeshima T, Kim HC (2014) Melatonin attenuates memory impairment induced by Klotho gene deficiency via interactive signaling between MT2 receptor, ERK, and Nrf2-related antioxidant potential Int J Neuropsychopharmacol 18 doi: https://doi.org/10.1093/ijnp/pyu105
  58. Slominski RM, Reiter RJ, Schlabritz-Loutsevitch N, Ostrom RS, Slominski AT (2012) Melatonin membrane receptors in peripheral tissues: distribution and functions. Mol Cell Endocrinol 351:152–166.  https://doi.org/10.1016/j.mce.2012.01.004 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Slominski AT, Zmijewski MA, Semak I, Kim TK, Janjetovic Z, Slominski RM, Zmijewski JW (2017) Melatonin, mitochondria, and the skin. Cell Mol Life Sci 74:3913–3925.  https://doi.org/10.1007/s00018-017-2617-7 CrossRefPubMedGoogle Scholar
  60. Sonna LA, Fujita J, Gaffin SL, Lilly CM (2002) Invited review: effects of heat and cold stress on mammalian gene expression. J Appl Physiol 92:1725–1742.  https://doi.org/10.1152/japplphysiol.01143.2001 CrossRefPubMedGoogle Scholar
  61. Sun FY, Lin X, Mao LZ, Ge WH, Zhang LM, Huang YL, Gu J (2002) Neuroprotection by melatonin against ischemic neuronal injury associated with modulation of DNA damage and repair in the rat following a transient cerebral ischemia. J Pineal Res 33:48–56CrossRefPubMedGoogle Scholar
  62. Tan DXCL, Poeggeler B, Manchester LC, Reiter RJ (1993) Melatonin: a potent, endogenous hydroxyl radical scavenger. J Pineal Res 1:57–60Google Scholar
  63. Tan DX, Manchester LC, Terron MP, Flores LJ, Reiter RJ (2007) One molecule, many derivatives: a never-ending interaction of melatonin with reactive oxygen and nitrogen species? J Pineal Res 42:28–42.  https://doi.org/10.1111/j.1600-079X.2006.00407.x CrossRefPubMedGoogle Scholar
  64. Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BFN, de Siqueira MF, Grainger A, Hannah L, Hughes L, Huntley B, van Jaarsveld AS, Midgley GF, Miles L, Ortega-Huerta MA, Townsend Peterson A, Phillips OL, Williams SE (2004) Extinction risk from climate change. Nature 427:145–148.  https://doi.org/10.1038/nature02121 CrossRefPubMedGoogle Scholar
  65. Thompson SN (2003) Trehalose-the insect ‘blood’ sugar. Adv Insect Physiol 31:205–285CrossRefGoogle Scholar
  66. Tomoyasu Y, Miller SC, Tomita S, Schoppmeier M, Grossmann D, Bucher G (2008) Exploring systemic RNA interference in insects: a genome-wide survey for RNAi genes in Tribolium. Genome Biol 9:R10.  https://doi.org/10.1186/gb-2008-9-1-r10 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Umasuthan N, Revathy KS, Lee Y, Whang I, Choi CY, Lee J (2012) A novel molluscan sigma-like glutathione S-transferase from Manila clam, Ruditapes philippinarum: cloning, characterization and transcriptional profiling. Comp Biochem Physiol Toxicol Pharmacol CBP 155:539–550.  https://doi.org/10.1016/j.cbpc.2012.01.001 CrossRefGoogle Scholar
  68. Wang Y, Brent CS, Fennern E, Amdam GV (2012) Gustatory perception and fat body energy metabolism are jointly affected by vitellogenin and juvenile hormone in honey bees. PLoS Genet 8:e1002779.  https://doi.org/10.1371/journal.pgen.1002779 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Wilson MJ, Kenny NJ, Dearden PK (2014) Components of the dorsal-ventral pathway also contribute to anterior-posterior patterning in honeybee embryos (Apis mellifera). EvoDevo 5:11.  https://doi.org/10.1186/2041-9139-5-11 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Wyatt GR (1967) The biochemistry of sugars and polysaccharides in insects. Adv Insect Physiol 4:287–360CrossRefGoogle Scholar
  71. Yan H, Meng F, Jia H, Guo X, Xu B (2012) The identification and oxidative stress response of a zeta class glutathione S-transferase (GSTZ1) gene from Apis cerana cerana. J Insect Physiol 58:782–791.  https://doi.org/10.1016/j.jinsphys.2012.02.003 CrossRefPubMedGoogle Scholar
  72. Yan H, Jia H, Wang X, Gao H, Guo X, Xu B (2013) Identification and characterization of an Apis cerana cerana Delta class glutathione S-transferase gene (AccGSTD) in response to thermal stress. Die Naturwissenschaften 100:153–163.  https://doi.org/10.1007/s00114-012-1006-1 CrossRefPubMedGoogle Scholar
  73. Yan Y, Zhang Y, Huaxia Y, et al. (2014) Identification and characterisation of a novel 1-Cys thioredoxin peroxidase gene (AccTpx5) from Apis cerana cerana. Comp Biochem Physiol B Biochem Mol Biol 172–173(6):39–48Google Scholar
  74. Yang HF, Kang MJ, Guo XQ, et al. (2010) Cloning, structural features, and expression analysis of the gene encoding thioredoxin reductase 1 from Apis cerana cerana. Comp Biochem Physiol B Biochem Mol Biol 156(3):229–236Google Scholar
  75. Yang J, Kemps-Mols B, Spruyt-Gerritse M, Anholts J, Claas F, Eikmans M (2016) The source of SYBR green master mix determines outcome of nucleic acid amplification reactions. BMC Res Notes 9:292.  https://doi.org/10.1186/s13104-016-2093-4 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Yao P, Hao L, Wang F, Chen X, Yan Y, Guo X, Xu B (2013a) Molecular cloning, expression and antioxidant characterisation of a typical thioredoxin gene (AccTrx2) in Apis cerana cerana. Gene 527:33–41.  https://doi.org/10.1016/j.gene.2013.05.062 CrossRefPubMedGoogle Scholar
  77. Yao P, Lu W, Meng F, Wang X, Xu B, Guo X (2013b) Molecular cloning, expression and oxidative stress response of a mitochondrial thioredoxin peroxidase gene (AccTpx-3) from Apis cerana cerana. J Insect Physiol 59:273–282.  https://doi.org/10.1016/j.jinsphys.2012.11.005 CrossRefPubMedGoogle Scholar
  78. Yao P, Chen X, Yan Y, Liu F, Zhang Y, Guo X, Xu B (2014) Glutaredoxin 1, glutaredoxin 2, thioredoxin 1, and thioredoxin peroxidase 3 play important roles in antioxidant defense in Apis cerana cerana. Free Radic Biol Med 68:335–346.  https://doi.org/10.1016/j.freeradbiomed.2013.12.020 CrossRefPubMedGoogle Scholar
  79. Yocum GD (2001) Differential expression of two HSP70 transcripts in response to cold shock, thermoperiod, and adult diapause in the Colorado potato beetle. J Insect Physiol 47:1139–1145CrossRefPubMedGoogle Scholar
  80. Yu F, Kang M, Meng F, Guo X, Xu B (2011) Molecular cloning and characterization of a thioredoxin peroxidase gene from Apis cerana cerana. Insect Mol Biol 20:367–378.  https://doi.org/10.1111/j.1365-2583.2011.01071.x CrossRefPubMedGoogle Scholar
  81. Zhang Z, Feng J, Pan C, Lv X, Wu W, Zhou Z, Liu F, Zhang L, Zhao Y (2013) Atrophin-Rpd3 complex represses Hedgehog signaling by acting as a corepressor of CiR. J Cell Biol 203:575–583.  https://doi.org/10.1083/jcb.201306012 CrossRefPubMedPubMedCentralGoogle Scholar
  82. Zhang YY, Guo XL, Liu YL, Liu F, Wang HF, Guo XQ, Xu BH (2016) Functional and mutational analyses of an omega-class glutathione S-transferase (GSTO2) that is required for reducing oxidative damage in Apis cerana cerana. Insect Mol Biol 25:470–486.  https://doi.org/10.1111/imb.12236 CrossRefPubMedGoogle Scholar
  83. Zhou Z, Yao X, Li S, Xiong Y, Dong X, Zhao Y, Jiang J, Zhang Q (2015) Deubiquitination of Ci/Gli by Usp7/HAUSP regulates hedgehog signaling. Dev Cell 34:58–72.  https://doi.org/10.1016/j.devcel.2015.05.016 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Crop Biology, College of Life SciencesShandong Agricultural UniversityTai’anPeople’s Republic of China
  2. 2.College of Animal Science and TechnologyShandong Agricultural UniversityTai’anPeople’s Republic of China

Personalised recommendations