The Science of Nature

, 105:20 | Cite as

Effects of environmental parameters on the chestnut gall wasp and its complex of indigenous parasitoids

  • Carmelo Peter Bonsignore
  • Umberto Bernardo
Original Paper


The chestnut gall wasp (CGW), Dryocosmus kuriphilus, an invasive pest native to China, has caused severe yield and economic losses to chestnut production in Europe since its arrival in 2002. In Southern Italy, the complex of indigenous parasitoids colonizing CGW was monitored between 2013 and 2015, with the aim of estimating the composition of the indigenous parasitoid complex, its ability to control CGW populations, and the interactions of both factors with several measured environmental parameters. We compared results among three differently managed field types. Results showed an increase in the rate of parasitism both when the host population density was lower and in unmanaged chestnut stands with more natural conditions. The percentage of parasitism in galls was related to morphological traits of the galls and to higher seasonal temperatures, which reduced the parasitism intensity because CGW develops earlier under such conditions. The host–parasitoid mortality inside galls varied among sites and was associated mostly with rot fungi during wet spring and summer months. Parasitoid species richness was similar among the study sites, but the proportion of parasitoid species differed between orchards and unmanaged coppice stands. The timing of attack by parasitoids followed a species-specific successional sequence throughout the larva-to-adult life cycle of the CGW. These interactions should be considered in future research on trophic relationships and when modeling invasive scenarios for new pest species.


Chestnut Cynipidae Dryocosmus kuriphilus Gall Host–parasitoid–environment Phenology 



We would like to thank Russo Diego and Vono Gregorio for support with monitoring and Chiara Ferracini for contributing to insect identification. We are grateful to Lorenzo Covarelli and Laura Tosi from the University of Perugia for isolating and identifying fungi from galls and to Giovanni Spampinato from Università Mediterranea of Reggio Calabria for identifying plant species.

Author contributions

CPB and UB conceived and designed research. CPB conducted experiments. CPB and UB analyzed data. CPB and UB wrote the manuscript. All authors read and approved the manuscript.

Funding information

This research was financially supported by Ministero dell’Istruzione, dell’Università e della Ricerca (PRIN 2010–2013, GEISCA project—Global Exotic Insect Sustainable Control Agroforestry), assigned to C. Bonsignore (Reggio Calabria) and U. Bernardo (Portici). Aspromonte National Park N. 451 [The cynipid gall wasp (Dryocosmus kuriphilus Yasumatsu) in the National Park of Aspromonte: Study on adaptation to new environments and ecological response of native natural enemies] was assigned to C. Bonsignore (Reggio Calabria).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

114_2018_1545_MOESM1_ESM.docx (5.3 mb)
ESM 1 (DOCX 5396 kb)


  1. Abe Y, Melika G, Stone GN (2007) The diversity and phylogeography of cynipid gall wasps (Hymenoptera, Cynipidae) of the oriental and eastern Palaearctic and their associated communities. Orient Insects 41:169–212CrossRefGoogle Scholar
  2. Aebi A, Schonrogge K, Melika G, Alma A, Bosios G, Quacchia A, Picciau L, Abe Y, Moriya S, Yaras K, Seljak G, Stone GN (2006) Parasitoid recruitment to the globally invasive chestnut gall wasp Dryocosmus kuriphilus. In: Ozaki K, Yukwa J, Ohgushi T, Price PW (eds) Galling arthropods and their associates, ecology and evolution. Springer-Verlag, Tokyo, pp 103–121CrossRefGoogle Scholar
  3. Aino S (1964) Breeding pest-resistant trees: Proceedings of a N.A.T.O. and N.S.F. Gerhold HD, Mcdermott RE, Schreiner EJ (editors) [place unknown] ElsevierGoogle Scholar
  4. Askew RR (1961) A study of the biology of species of the genus Mesopolobus Westwood (Hymenoptera: Pteromalidae) associated with cynipid galls on oak. Trans R Entomol Soc Lond 113:155–173CrossRefGoogle Scholar
  5. Askew RR, Nieves-Aldrey JL (2000) The genus Eupelmus Dalman, 1820 (Hymenoptera, Chalcidoidea, Eupelmidae) in peninsular Spain and the Canary Islands, with taxonomic notes and descriptions of new species. Graellsia 56:49–61CrossRefGoogle Scholar
  6. Askew RR, Melika G, Pujade-Villar J, Schoenrogge K, Stone GN, Nieves-Aldrey JL (2013) Catalogue of parasitoids and inquilines in cynipid oak galls in the West Palaearctic. Zootaxa 3643:001–133CrossRefGoogle Scholar
  7. Bailey R, Schonrogge K, Cook JM, Melika G, Csoka G, Thuroczy C, Stone GN (2009) Host niches and defensive extended phenotypes structure parasitoid wasp communities. PLoS Biol 7(8):1–12CrossRefGoogle Scholar
  8. Barros RC, Winck AT, Machado KS, Basgalupp MP, de Carvalho ACPLF, Ruiz DD, de Souza ON (2012) Automatic design of decision-tree induction algorithms tailored to flexible-receptor docking data. BMC Bioinf 13:310CrossRefGoogle Scholar
  9. Battisti A, Benvegnù I, Colombari F, Haack RA (2014) Invasion by the chestnut gall wasp in Italy causes significant yield loss in Castanea sativa nut production. Agric For Entomol 16:75–79CrossRefGoogle Scholar
  10. Beccari G, Caproni L, Tini F, Uhlig S, Covarelli L (2016) Presence of Fusarium species and other toxigenic fungi in malting barley and multi-mycotoxin analysis by liquid chromatography-high-resolution mass spectrometry. J Agric Food Chem 64:4390–4399CrossRefPubMedGoogle Scholar
  11. Bernardinelli I, Bessega D, Zanolli P, Governatori G, Zandigiacomo P (2016) Survey of indigenous parasitoids affecting the invasive chestnut gall wasp Dryocosmus kuriphilus in the Friuli Venezia Giulia region (North-East Italy). EPPO Bull 46:286–289CrossRefGoogle Scholar
  12. Bernardo U, Gebiola M, Xiao Z, Zhu C-D, Pujade-Villar J, Viggiani G (2013a) Description of Synergus castaneus n. sp. (Hymenoptera: Cynipidae: Synergini) associated with an unknown gall on Castanea spp. (Fagaceae) in China. Ann Entomol Soc Am 106:437–446CrossRefGoogle Scholar
  13. Bernardo U, Iodice L, Sasso R, Tutore VA, Cascone P, Guerrieri E (2013b) Biology and monitoring of Dryocosmus kuriphilus on Castanea sativa in Southern Italy. Agric For Entomol 15:65–76CrossRefGoogle Scholar
  14. Bernardo U, Gualtieri L, Nugnes F, Verdolini E, Riolo P, Viggiani G (2017) A new species of Soikiella Nowicki (Hymenoptera: Trichogrammatidae) from Italy. Zootaxa 4242:185–192CrossRefPubMedGoogle Scholar
  15. Bonsignore CP, Manti F, Castiglione E (2015) Interactions between pupae of the pine processionary moth (Thaumetopoea pityocampa) and parasitoids in a Pinus forest. Bull Entomol Res 105:621–628CrossRefPubMedGoogle Scholar
  16. Brussino G, Bosio G, Baudino M, Giordano R, Ramello F, Melika G (2002) A dangerous exotic insect threatening European chestnut. Inf Agrar 58:59–61Google Scholar
  17. Colombari F, Battisti A (2015) Spread of the introduced biocontrol agent Torymus sinensis in north-eastern Italy: dispersal through active flight or assisted by wind? BioControl 61:127–139CrossRefGoogle Scholar
  18. Colombari F, Battisti A (2016) Native and introduced parasitoids in the biocontrol of Dryocosmus kuriphilus in Veneto (Italy). EPPO Bull 46:275–285CrossRefGoogle Scholar
  19. Cooper WR, Rieske LK (2007) Community associates of an exotic gallmaker, Dryocosmus kuriphilus (Hymenoptera: Cynipidae), in eastern North America. Ann Entomol Soc Am 100:236–244CrossRefGoogle Scholar
  20. Cooper WR, Rieske LK (2010) Gall structure affects ecological associations of Dryocosmus kuriphilus (Hymenoptera: Cynipidae). Environ Entomol 39:787–797CrossRefPubMedGoogle Scholar
  21. Craig TP, Itami JK, Price PW (1990) The window of vulnerability of a shoot-galling sawfly to attack by a parasitoid. Ecology 71:1471–1482CrossRefGoogle Scholar
  22. de Vere Graham MWR, Gijswijt MJ (1998) Revision of the European species of Torymus Dalman (s. Lat.) (Hymenoptera: Torymidae). Zool Verhandel 317:1–202Google Scholar
  23. EPPO (2005) Dryocosmus kuriphilus. EPPO Bull 35:422–424CrossRefGoogle Scholar
  24. Fan B, Zhu DH (2010) Molecular phylogenetic relationships of Dryocosmus kuriphilus Yasumatsu of different geographical populations based on partial sequences of 16S rRNA gene. J Nat Sci Hunan Norm Univ 33:78–82Google Scholar
  25. Fernandes GW, Price PW (1992) The adaptive significance of insect gall distribution—survivorship of species in xeric and mesic habitats. Oecologia 90:14–20CrossRefPubMedGoogle Scholar
  26. Ferracini C, Ferrari E, Pontini M, Nova LKH, Saladini MA, Alma A (2017) Post-release evaluation of non-target effects of Torymus sinensis, the biological control agent of Dryocosmus kuriphilus in Italy. BioControl 62:445–456CrossRefGoogle Scholar
  27. Ferracini C, Bertolino S, Bernardo U, Bonsignore CP, Faccoli M, Ferrari E, Lupi D, Maini S, Mazzone L, Nugnes F, Rocco A, Santi F, Tavella L (2018) Do Torymus sinensis (Hymenoptera: Torymidae) and agroforestry system affect native parasitoids associated with the Asian chestnut gall wasp? Biol Control.
  28. Francati S, Alma A, Ferracini C, Pollini A, Dindo ML (2015) Indigenous parasitoids associated with Dryocosmus kuriphilus in a chestnut production area of Emilia Romagna (Italy). Bull Insectol 68:127–134Google Scholar
  29. Geiser DM, Jimenez-Gasco M, Kang S, Makalowska I, Veeraraghavan N, Ward TJ, Zhang N, Khuldau GA, O’Donnell K (2004) FUSARIUM-ID v. 1.0: a DNA sequence database for identifying Fusarium. Eur J Plant Pathol 110:473–479CrossRefGoogle Scholar
  30. Gibert P, Allemand R, Henri H, Huey RB (2010) Local adaptation and evolution of parasitoid interactions in an invasive species, Drosophila subobscura. Evol Ecol Res 12:873–883Google Scholar
  31. Gilioli G, Pasquali S, Tramontini S, Riolo F (2013) Modelling local and long-distance dispersal of invasive chestnut gall wasp in Europe. Ecol Model 263:281–290CrossRefGoogle Scholar
  32. Gopalakrishnan C, Narayanan K (1989) Occurrence of Fusarium oxysporum Schlecht and its pathogenicity on guava scale Chloropulvinaria psidii Maskell (Hemiptera: Coccidae). Curr Sci 58:92–93Google Scholar
  33. Graziosi I, Rieske LK (2014) Potential fecundity of a highly invasive gall maker, Dryocosmus kuriphilus (Hymenoptera: Cynipidae). Environ Entomol 43:31053–31058CrossRefGoogle Scholar
  34. Graziosi I, Santi F (2008) Chestnut gall wasp (Dryocosmus kuriphilus): spreading in Italy and new records in Bologna province. Bull Insectol 61:343–348Google Scholar
  35. Jactel H, Goulard M, Menassieu P (2002) Habitat diversity in forest plantations reduces infestations of the pine stem borer Dioryctria sylvestrella. J Anim Ecol 36:618–628CrossRefGoogle Scholar
  36. Jones D (1983) The influence of host density and gall shape on the survivorship of Diastrophus kincaidii Gill (Hymenoptera, Cynipidae). Can J Zool 61:2138–2142CrossRefGoogle Scholar
  37. Joseph MB, Gentles M, Pearse IS (2011) The parasitoid community of Andricus quercuscalifornicus and its association with gall size, phenology, and location. Biodivers Conserv 20:203–216CrossRefGoogle Scholar
  38. Kaartinen R, Stone G, Hearn J, Lohse K, Roslin T (2010) Revealing secret liaisons: DNA barcoding changes our understanding of food webs. Ecol Entomol 35:623–638CrossRefGoogle Scholar
  39. Kass GV (1980) An exploratory technique for investigating large quantities of categorical data. Appl Stat 29:119–127CrossRefGoogle Scholar
  40. Kato K, Hijii N (1993) Optimal clutch size of the chestnut gallwasp, Dryocosmus kuriphilus Yasumatsu (Hymenoptera: Cynipidae). Res Popul Ecol 35:1–14CrossRefGoogle Scholar
  41. Kato K, Hijii N (1997) Effects of gall formation by Dryocosmus kuriphilus Yasumatsu (Hym., Cynipidae) on the growth of chestnut trees. J Appl Entomol 121:9–15CrossRefGoogle Scholar
  42. Kato K, Hijii N (2001) Ovipositional traits of the chestnut gall wasp, Dryocosmus kuriphilus (Hymenoptera: Cynipidae). Entomol Sci 4:295–299Google Scholar
  43. Kos K, Kriston E, Melika G (2015) Invasive chestnut gall wasp Dryocosmus kuriphilus (Hymenoptera: Cynipidae), its native parasitoid community and association with oak gall wasps in Slovenia. EJE 112:698–704Google Scholar
  44. Kruess A (2003) Effects of landscape structure and habitat type on a plant-herbivore-parasitoid community. Ecography 26:283–290CrossRefGoogle Scholar
  45. Lotfalizadeh H, Delvare G, Rasplus JY (2008) Sycophila pistacina (Hymenoptera: Eurytomidae): a valid species. EJE 105:137–147Google Scholar
  46. Magro P, Speranza S, Stacchiotti M, Martignoni D, Paparatti B (2010) Gnomoniopsis associated with necrosis of leaves and chestnut galls induced by Dryocosmus kuriphilus. New Dis Rep 21:15Google Scholar
  47. Maresi G, Oliveira Longa CM, Turchetti T (2013) Brown rot on nuts of Castanea sativa Mill: an emerging disease and its causal agent. iForest 6:294–301CrossRefGoogle Scholar
  48. Marino PC, Landis DA (1996) Effect of landscape structure on parasitoid diversity and parasitism in agroecosystems. Ecol Appl 61:276–284CrossRefGoogle Scholar
  49. Matošević D, Melika G (2013) Recruitment of native parasitoids to a new invasive host: first results of Dryocosmus kuriphilus parasitoid assemblage in Croatia. Bull Insectol 66:231–238Google Scholar
  50. Matošević D, Quacchia A, Kriston É, Melika G (2014) Biological control of the invasive Dryocosmus kuriphilus (Hymenoptera: Cynipidae)—an overview and the first trials in Croatia. Dijana Vuletić, editor SEEFOR 5:3–12Google Scholar
  51. Matošević D, Lacković N, Melika G, Kos K, Franić I, Kriston É, Bozsó M, Seljak G, Rot M (2016) Biological control of invasive Dryocosmus kuriphilus with introduced parasitoid Torymus sinensis in Croatia, Slovenia and Hungary. Period Biol 117:471–477CrossRefGoogle Scholar
  52. Moriya S, Inoue K, Otake A, Shiga M, Mabuchi M (1989) Decline of the chestnut gall wasp population, Dryocosmus kuriphilus Yasumatsu (Hymenoptera: Cynipidae) after the establishment of Torymus sinensis Kamijo (Hymenoptera: Torymidae). Appl Entomol Zool 24:231–233CrossRefGoogle Scholar
  53. Moriya S, Shiga S, Adachi I (2003) Classical biological control of the chestnut gall wasp in Japan. In: Proceedings of the 1st international symposium on biological control of arthropods, Honolulu, Hawaii, 14–18 January 2002. United States Department of Agriculture, Forest Service, Washington, pp 407–415Google Scholar
  54. Murakami Y (1980) Current topics on the chestnut gall wasp—experience in China. Nogyo oyobi Engei (Agric Hortic) 55:249–253 (in Japanese)Google Scholar
  55. Murakami Y (1981) The parasitoids of Dryocosmus kuriphilus Yasumatsu (Hymenoptera: Cynipidae) in Japan and the introduction of a promising natural enemy from China (Hymenoptera: Chalcidoidea). J Fac Agric Kyushu Univ 25:167–174Google Scholar
  56. Murakami Y, Ohkubo N, Moriya S, Gyoutoku Y, Kim CH, Kim JK (1995) A delayed increase in the population of an imported parasitoid, Torymus (Syntomaspis) sinensis (Hymenoptera: Torymidae) in Kumamoto, Southwestern Japan. Appl Entomol Zool 30:215–224CrossRefGoogle Scholar
  57. Nakamura M, Nakamura K (1977) Population dynamics of the chestnut gall wasp, Dryocosmus kuriphilus Yasumatsu (Hymenoptera: Cynipidae). Oecologia 27:97–116CrossRefPubMedGoogle Scholar
  58. Noyes JS (2002) Catalogue of the Chalcidoidea of the world. CD-Rom. Expert Center for Taxonomic Information, AmsterdamGoogle Scholar
  59. Nugnes F, Gualtieri L, Bonsignore CP, Parillo R, Annarumma R, Griffo R, Bernardo U (2018) Resistance of a local ecotype of Castanea sativa to Dryocosmus kuriphilus (Hymenoptera: Cynipidae) in Southern Italy. Forests 9: in pressGoogle Scholar
  60. O'Donnell K, Kistler HC, Cigelnik E, Ploetz RC (1998) Multiple evolutionary origins of the fungus causing Panama disease of banana: concordant evidence from nuclear and mitochondrial gene genealogies. Proc Natl Acad Sci U S A 95:2044–2049CrossRefPubMedPubMedCentralGoogle Scholar
  61. Panzavolta T, Bracalini M, Croci F, Campani C, Bartoletti T, Miniati G, Benedettelli S, Tiberi R (2012) Asian chestnut gall wasp in Tuscany: gall characteristics, egg distribution and chestnut cultivar susceptibility. Agric For Entomol 14:139–145CrossRefGoogle Scholar
  62. Panzavolta T, Bernardo U, Bracalini M, Cascone P, Croci F, Gebiola M, Iodice L, Tiberi R, Guerrieri E (2013) Native parasitoids associated with Dryocosmus kuriphilus in Tuscany, Italy. Bull Insectol 66:195–201Google Scholar
  63. Pasche S, Calmin G, Auderset G, Crovadore J, Pelleteret P, Mauch-Mani B, Barja F, Paul B, Jermini M, Lefort F (2016) Gnomoniopsis smithogilvyi causes chestnut canker symptoms in Castanea sativa shoots in Switzerland. Fungal Genet Biol 87:9–21CrossRefPubMedGoogle Scholar
  64. Prakash S, Singh G, Soni N, Sharma S (2010) Pathogenicity of Fusarium oxysporum against the larvae of Culex quinquefasciatus (Say) and Anopheles stephensi (Liston) in laboratory. Parasitol Res 107:651–655CrossRefPubMedGoogle Scholar
  65. Quacchia A, Moriya S, Bosio G, Scapin I, Alma A (2008) Rearing, release and settlement prospect in Italy of Torymus sinensis, the biological control agent of the chestnut gall wasp Dryocosmus kuriphilus. BioControl 53:829–839CrossRefGoogle Scholar
  66. Quacchia A, Ferracini C, Nicholls JA, Piazza E, Saladini MA, Tota F, Melika G, Alma A (2013) Chalcid parasitoid community associated with the invading pest Dryocosmus kuriphilus in north-western Italy. Insect Conserv Divers 6:114–123CrossRefGoogle Scholar
  67. Quacchia A, Moriya S, Bosio G (2014) Effectiveness of Torymus sinensis in the biological control of Dryocosmus kuriphilus in Italy. Acta Hortic (1043):199–204Google Scholar
  68. Reale L, Tedeschini E, Rondoni G, Ricci C, Bin F, Frenguelli G, Ferranti F (2016) Histological investigation on gall development induced by a worldwide invasive pest, Dryocosmus kuriphilus, on Castanea sativa. Plant Biosyst 150:35–42CrossRefGoogle Scholar
  69. Redfern M, Hunter MD (2005) Time tells: long-term patterns in the population dynamics of the yew gall midge, Taxomyia taxi (Cecidomyiidae), over 35 years. Ecol Entomol 30:86–95CrossRefGoogle Scholar
  70. Rieske LK (2007) Success of an exotic gallmaker, Dryocosmus kuriphilus, on chestnut in the USA: an historical account. EPPO Bull 37:172–174CrossRefGoogle Scholar
  71. Romani R, Rondoni G, Gragnoli L, Pergolari P, Santinelli C, Rossi Stacconi MV, Ricci C (2010) Indagini bio-etologiche e morfologiche su Dryocosmus kuriphilus Yasumatsu. Atti della Accademia Nazionale Italiana di Entomologia, Rendiconti 58:97–104Google Scholar
  72. Roques A, Skrzypczyńska M (2003) Seed-infesting chalcids of the genus Megastigmus Dalman, 1820 (Hymenoptera: Torymidae) native and introduced to the West Palearctic region: taxonomy, host specificity and distribution. J Nat Hist 37:127–238CrossRefGoogle Scholar
  73. Santi F, Maini S (2011) New association between Dryocosmus kuriphilus and Torymus flavipes in chestnut trees in the Bologna area (Italy): first results. Bull Insectol 64:275–278Google Scholar
  74. Sartor C, Dini F, Marinoni DT, Mellano MG (2015) Impact of the Asian wasp Dryocosmus kuriphilus (Yasumatsu) on cultivated chestnut: yield loss and cultivar susceptibility. Sci Hortic 197:454–460CrossRefGoogle Scholar
  75. Schmitt T (2006) Molecular biogeography of Europe: Pleistocene cycles and postglacial trends. Front Zool 2007:4–11Google Scholar
  76. Schönrogge K, Stone GN, Crawley MJ (1996) Alien herbivores and native parasitoids: rapid developments and structure of the parasitoid and inquiline complex in an invading gall wasp Andricus quercuscalicis (Hymenoptera: Cynipidae). Ecol Entomol 21:71–80CrossRefGoogle Scholar
  77. Seljak G (2006) Chestnut gall wasp—Dryocosmus kuriphilus Yasumatsu. Report—Phytosanitary Administration of the Republic of Slovenia [online] URL:
  78. Smith IM, Hoffmann AA, Thomson LJ (2015) Ground cover and floral resources in shelterbelts increase the abundance of beneficial hymenopteran families. Agric For Entomol 17:120–128CrossRefGoogle Scholar
  79. Stone GN, Schönrogge K, Crawley MJ, Fraser S (1995) Geographic and between-generation variation in the parasitoid communities associated with an invading gallwasp, Andricus quercuscalicis (Hymenoptera, Cynipidae). Oecologia 104:207–217CrossRefPubMedGoogle Scholar
  80. Stone GN, Schönrogge K, Atkinson RJ, Bellido D, Pujade-Villar J (2002) The population biology of oak gall wasps (Hymenoptera: Cynipidae). Annu Rev Entomol 47:633–668CrossRefPubMedGoogle Scholar
  81. Tang CT, Wu SM, Yen CF, Chang RJ, Yang MM (2015) Successful colonization of a new invasive pest, the chestnut gall wasp Dryocosmus kuriphilus (Hymenoptera: Cynipidae), in Taiwan. Formos Entomol 35:135–142Google Scholar
  82. Torii T (1959) Studies on the biological control of the chestnut gall wasp, Dryocosmus kuriphilus Yasumatsu (Hym. Cynipidae), with particular reference to the utilization of its indigenous natural enemies. J Fac Agric Shinshu Univ 2:71–149Google Scholar
  83. Tosi L, Beccari G, Rondoni G, Covarelli L, Ricci C (2015) Natural occurrence of Fusarium proliferatum on chestnut in Italy and its potential entomopathogenicity against the Asian chestnut gall wasp Dryocosmus kuriphilus. J Pest Sci 88:369–381CrossRefGoogle Scholar
  84. Triyogo A, Yasuda H (2013) Effect of host-plant manipulation by a gall-inducing insect on abundance of herbivores on chestnut trees. Appl Entomol Zool 48:345–353CrossRefGoogle Scholar
  85. Tschumi M, Albrecht M, Entling MH, Jacot K (2015) High effectiveness of tailored flower strips in reducing pests and crop plant damage. Proc R Soc Lond B Biol 282(20151369).
  86. Tylianakis JM, Tscharntke T, Lewis OT (2007) Habitat modification alters the structure of tropical host–parasitoid food webs. Nature 445:202–205CrossRefPubMedGoogle Scholar
  87. Vannini A, Vettraino A, Martignoni D, Morales-Rodriguez C, Contarini M, Caccia R, Paparatti B, Speranza S (2017) Does Gnomoniopsis castanea contribute to the natural biological control of chestnut gall wasp? Fungal Biol 121:44–52CrossRefPubMedGoogle Scholar
  88. Viggiani G, Nugnes F (2010) Description of the larval stages of Dryocosmus kuriphilus Yasumatsu (Hymenoptera: Cynipidae), with notes on their phenology. JEAR Series II 42:39–45Google Scholar
  89. Vinale F, Ruocco M, Manganiello G, Guerrieri E, Bernardo U, Mazzei P, Piccolo A, Sannino F, Caira S, Woo SL, Lorito M (2014) Metabolites produced by Gnomoniopsis castanea associated with necrosis of chestnut galls. CBTA 1:1–3Google Scholar
  90. Visentin I, Gentile S, Valentino D, Gonthier P, Tamietti G, Cardinale F (2012) Gnomoniopsis castanea sp. nov. (Gnomoniaceae, Diaporthales) as the causal agent of nut rot in sweet chestnut. J Plant Pathol 94:411–419Google Scholar
  91. Weis AE, Abrahamson WG, Mccrea KD (1985) Host gall size and oviposition success by the parasitoid Eurytoma gigantea. Ecol Entomol 10:341–348CrossRefGoogle Scholar
  92. Yara K, Matsuo K, Sasawaki T, Shimoda T, Moriya S (2012) Influence of the introduced parasitoid Torymus sinensis (Hymenoptera: Torymidae) on T. koreanus and T. beneficus as indigenous parasitoids of the chestnut gall wasp Dryocosmus kuriphilus (Hymenoptera: Cynipidae) on chestnut trees in Nagano Prefecture, Japan. Appl Entomol Zool 47:55–60CrossRefGoogle Scholar
  93. Yasumatsu K (1951) A new Dryocosmus injurious to chestnut trees in Japan (Hym., Cynipidae). Mushi 22:89–93Google Scholar
  94. Yasumatsu K, Kamijo K (1979) Chalcidoid parasites of Dryocosmus kuriphilus Yasumatsu (Cynipidae) in Japan, with descriptions of five new species (Hymenoptera). Esakia 14:93–111Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratorio di Entomologia ed Ecologia Applicata, Dipartimento Patrimonio, Architettura, UrbanisticaUniversità Mediterranea di Reggio CalabriaReggio CalabriaItaly
  2. 2.CNR, Institute for Sustainable Plant Protection, SS of PorticiPorticiItaly

Personalised recommendations