The Science of Nature

, 105:18 | Cite as

Fifty shades of white: how white feather brightness differs among species

  • Branislav Igic
  • Liliana D’Alba
  • Matthew D. Shawkey
Original Paper


White colouration is a common and important component of animal visual signalling and camouflage, but how and why it varies across species is poorly understood. White is produced by wavelength-independent and diffuse scattering of light by the internal structures of materials, where the degree of brightness is related to the amount of light scattered. Here, we investigated the morphological basis of brightness differences among unpigmented pennaceous regions of white body feathers across 61 bird species. Using phylogenetically controlled comparisons of reflectance and morphometric measurements, we show that brighter white feathers had larger and internally more complex barbs than duller white feathers. Higher brightness was also associated with more closely packed barbs and barbules, thicker and longer barbules, and rounder and less hollow barbs. Larger species tended to have brighter white feathers than smaller species because they had thicker and more complex barbs, but aquatic species were not significantly brighter than terrestrial species. As similar light scattering principals affect the brightness of chromatic signals, not just white colours, these findings help broaden our general understanding of the mechanisms that affect plumage brightness. Future studies should examine how feather layering on a bird’s body contributes to differences between brightness of white plumage patches within and across species.


Achromaticity Animal colouration Brightness Feather structure White 



We thank Asritha Nallapaneni, Bill Hsiung, Devi Stuart-Fox, Jennifer Peteya, Ming Xiao, Nick Justyn and various anonymous reviewers for comments. We would like to thank the Field Museum of Natural History (Chicago, IL, USA), American Museum of Natural History, and the University of Akron for providing feather samples. This study was funded by a grant from the Air Force Office of Scientific Research (FA9550-16-1-0331) and the Research Foundation Flanders (FWO G007117N).

Supplementary material

114_2018_1543_MOESM1_ESM.doc (3.1 mb)
ESM 1 (DOC 3127 kb)


  1. Barrera-Guzman AO, Aleixo A et al (2018) Hybrid speciation leads to novel male secondary sexual ornamentation of an Amazonian bird. PNAS 115(2):E218–E225. CrossRefPubMedGoogle Scholar
  2. Biro LP, Vigneron J-P (2011) Photonic nanoarchitectures in butterflies and beetles: valuable sources for bioinspiration. Laser Photon Rev 5(1):27–51. CrossRefGoogle Scholar
  3. Board R, Perrott H (1979) Vaterite, a constituent of the eggshells of the nonparasitic cuckoos, Guira guira and Crotophagi ani. Calcif Tissue Int 29(1):63–69. CrossRefPubMedGoogle Scholar
  4. Bortolotti GR, Stoffel MJ et al (2011) Wintering snowy owls Bubo scandiacus integrate plumage colour, behaviour and their environment to maximize efficacy of visual displays. Ibis 153(1):134–142. CrossRefGoogle Scholar
  5. Brink D, Van Der Berg N (2004) Structural colours from the feathers of the bird Bostrychia hagedash. J Phys D Appl Phys 37(5):813–818. CrossRefGoogle Scholar
  6. Burnham KP, Anderson DR, Huyvaert KP (2011) AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behav Ecol Sociobiol 65(1):23–35. CrossRefGoogle Scholar
  7. Burresi M, Cortese L, Pattelli L, Kolle M, Vukusic P, Wiersma DS, Steiner U, Vignolini S (2014) Bright-white beetle scales optimise multiple scattering of light. Sci Rep 4(1):6075. CrossRefPubMedPubMedCentralGoogle Scholar
  8. Butler M, Johnson AS (2004) Are melanized feather barbs stronger? J Exp Biol 207(2):285–293. CrossRefPubMedGoogle Scholar
  9. Cassey P, Thomas GH et al (2012) Why are birds’ eggs colourful? Eggshell pigments co-vary with life-history and nesting ecology among British breeding non-passerine birds. Biol J Linn Soc 106(3):657–672. CrossRefGoogle Scholar
  10. D'Alba L, Saranathan V, Clarke JA, Vinther JA, Prum RO, Shawkey MD (2011a) Colour-producing β-keratin nanofibres in blue penguin (Eudyptula minor) feathers. Biol Lett 7(4):543–546. CrossRefPubMedPubMedCentralGoogle Scholar
  11. D'Alba L, Van Hemert C et al (2011b) A natural experiment on the condition-dependence of achromatic plumage reflectance in black-capped chickadees. PLoS One 6(10):e25877. CrossRefPubMedPubMedCentralGoogle Scholar
  12. D’Alba L, Kieffer L et al (2012) Relative contributions of pigments and biophotonic nanostructures to natural color production: a case study in budgerigar (Melopsittacus undulatus) feathers. J Exp Biol 215(8):1272–1277. Scholar
  13. D’Alba L, Van Hemert C et al (2014) Melanin-based color of plumage: role of condition and of feathers’ microstructure. Integr Comp Biol 54(4):633–644. CrossRefPubMedGoogle Scholar
  14. del Hoyo J, Elliott A et al (2016) Handbook of the birds of the world alive. Lynx Edicions, BarcelonaGoogle Scholar
  15. Doucet SM, Mennill DJ, Hill GE (2007) The evolution of signal design in manakin plumage ornaments. Am Nat 169(S1):S62–S80. CrossRefPubMedGoogle Scholar
  16. Doucet SM, Mennill DJ, Montgomerie R, Boag PT, Ratcliffe LM (2005) Achromatic plumage reflectance predicts reproductive success in male black-capped chickadees. Behav Ecol 16(1):218–222. CrossRefGoogle Scholar
  17. Dove CJ, Agreda A (2007) Differences in plumulaceous feather characters of dabbling and diving ducks. Condor 109(1):192–199.[192:DIPFCO]2.0.CO;2Google Scholar
  18. Dyck J (1979) Winter plumage of the rock ptarmigan: structure of the air-filled barbules and function of the white colour. Dansk Orn Foren Tidsskr 73:41–58Google Scholar
  19. Endler JA (1992). Signals, signal conditions, and the direction of evolution. Am Nat: S125–S153. doi:
  20. Endler JA, Westcott DA, Madden JR, Robson T (2005) Animal visual systems and the evolution of color patterns: sensory processing illuminates signal evolution. Evolution 59(8):1795–1818. CrossRefPubMedGoogle Scholar
  21. Ferns PN, Hinsley SA (2004) Immaculate tits: head plumage pattern as an indicator of quality in birds. Anim Behav 67(2):261–272. CrossRefGoogle Scholar
  22. Fox J, Weisberg S (2010) An R companion to applied regression. Sage, Thousand Oaks, CAGoogle Scholar
  23. Fugle GN, Rothstein SI, Osenberg CW, McGinley MA (1984) Signals of status in wintering white-crowned sparrows, Zonotrichia leucophrys gambelii. Anim Behav 32(1):86–93. CrossRefGoogle Scholar
  24. Galván I (2008) The importance of white on black: unmelanized plumage proportion predicts display complexity in birds. Behav Ecol Sociobiol 63(2):303–311. CrossRefGoogle Scholar
  25. Galván I (2011) Feather microstructure predicts size and colour intensity of a melanin-based plumage signal. J Avian Biol 42(6):473–479. CrossRefGoogle Scholar
  26. Galván I, Negro JJ, Bortolotti GR, Margalida A (2009) On silver wings: a fragile structural mechanism increases plumage conspicuousness. J Avian Biol 40(5):475–480. CrossRefGoogle Scholar
  27. Hanssen SA, Folstad I, Erikstad KE (2006) White plumage reflects individual quality in female eiders. Anim Behav 71(2):337–343. CrossRefGoogle Scholar
  28. Hunter RS (1937) Methods of determining gloss. Journal of Rearch of the National Bureau of Standards 18(1):19–39. CrossRefGoogle Scholar
  29. Igic B, D'Alba L, Shawkey MD (2016) Manakins can produce iridescent and bright feather colours without melanosomes. J Exp Biol 219(12):1851–1859. CrossRefPubMedGoogle Scholar
  30. Igic B, Fecheyr-Lippens D, Xiao M, Chan A, Hanley D, Brennan PRL, Grim T, Waterhouse GIN, Hauber ME, Shawkey MD (2015) A nanostructural basis for gloss of avian eggshells. J R Soc Interface 12(103):20141210. CrossRefPubMedPubMedCentralGoogle Scholar
  31. Iskandar J-P, Eliason CM, Astrop T, Igic B, Maia R, Shawkey MD (2016) Morphological basis of glossy red plumage colours. Biol J Linn Soc 119(2):477–487. CrossRefGoogle Scholar
  32. Ives AR, Garland T Jr (2009) Phylogenetic logistic regression for binary dependent variables. Syst Biol 59(1):9–26. CrossRefPubMedGoogle Scholar
  33. Jetz W, Thomas G et al (2012) The global diversity of birds in space and time. Nature 491(7424):444–448. CrossRefPubMedGoogle Scholar
  34. Kinoshita S (2008) Structural colors in the realm of nature. World Scientific, Singapore. CrossRefGoogle Scholar
  35. Luke SM, Hallam BT, Vukusic P (2010) Structural optimization for broadband scattering in several ultra-thin white beetle scales. Appl Opt 49(22):4246–4254. CrossRefPubMedGoogle Scholar
  36. Mackinven K, Briskie JV (2014) Differential wear of feathers in the polymorphic New Zealand fantail (Rhipidura fuliginosa)—a selective advantage of melanism? Emu 114(2):154–159. Google Scholar
  37. Maia R, Rubenstein DR, Shawkey MD (2013) Key ornamental innovations facilitate diversification in an avian radiation. PNAS 110(26):10687–10692. CrossRefPubMedPubMedCentralGoogle Scholar
  38. Mason CW (1923) Structural colors in feathers. I. J Phys Chem 27(3):201–251CrossRefGoogle Scholar
  39. McGlothlin JW, Duffy DL et al (2007) Diet quality affects an attractive white plumage pattern in dark-eyed juncos (Junco hyemalis). Behav Ecol Sociobiol 61(9):1391–1399. CrossRefGoogle Scholar
  40. Mennill DJ, Doucet SM, Montgomerie R, Ratcliffe LM (2003) Achromatic color variation in black-capped chickadees, Poecile atricapilla: black and white signals of sex and rank. Behav Ecol Sociobiol 53(6):350–357. Google Scholar
  41. Merilaita S, Lind J (2005) Background-matching and disruptive coloration, and the evolution of cryptic coloration. Proc Roy Soc B 272(1563):665–670. CrossRefGoogle Scholar
  42. Moreno J, Velando A, Ruiz-de-Castañeda R, Cantarero A, González-Braojos S, Redondo A (2011) Plasma antioxidant capacity and oxidative damage in relation to male plumage ornamental traits in a montane Iberian pied flycatcher Ficedula hypoleuca population. Acta Ornithol 46(1):62–67. CrossRefGoogle Scholar
  43. Nayar SK, Oren M (1995) Visual appearance of matte surfaces. Science 267(5201):1153–1156. CrossRefPubMedGoogle Scholar
  44. Negro JJ, Bortolotti GR et al (2007) Deceptive plumage signals in birds: manipulation of predators or prey? Biol J Linn Soc 90(3):467–477. CrossRefGoogle Scholar
  45. Orme D, Freckleton R, et al. (2013) caper: Comparative Analyses of Phylogenetics and Evolution in RGoogle Scholar
  46. Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20(2):289–290. CrossRefPubMedGoogle Scholar
  47. Parkin J (1928) The glossy petal of Ranunculus. Ann Bot 42(167):739–755CrossRefGoogle Scholar
  48. Pinheiro J, Bates D, et al. (2012) nlme: linear and nonlinear mixed effects modelsGoogle Scholar
  49. Pryke SR, Griffith SC (2009) Postzygotic genetic incompatibility between sympatric color morphs. Evolution 63(3):793–798. CrossRefPubMedGoogle Scholar
  50. R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, AustriaGoogle Scholar
  51. Revell LJ (2010) Phylogenetic signal and linear regression on species data. Methods Ecol Evol 1(4):319–329. CrossRefGoogle Scholar
  52. Revell LJ (2012) Phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol Evol 3(2):217–223. CrossRefGoogle Scholar
  53. Rijke A (1970) Wettability and phylogenetic development of feather structure in water birds. J Exp Biol 52(2):469–479Google Scholar
  54. Russell JE, Tumlison R (1996) Comparison of microstructure of white winter fur and brown summer fur of some Arctic mammals. Acta Zool 77(4):279–282. CrossRefGoogle Scholar
  55. Ruxton GD, Sherratt TN, Speed MP (2004) Avoiding attack: the evolutionary ecology of crypsis, warning signals, and mimicry. Oxford University Press, New York, NY. CrossRefGoogle Scholar
  56. Schor R, Krimm S (1961) Studies on the structure of feather keratin: I. X-ray diffraction studies and other experimental data. Biophys J 1(6):467–487. CrossRefPubMedPubMedCentralGoogle Scholar
  57. Shawkey MD, Hill GE (2005) Carotenoids need structural colours to shine. Biol Lett 1(2):121–124. CrossRefPubMedPubMedCentralGoogle Scholar
  58. Shawkey MD, Maia R, D'Alba L (2011) Proximate bases of silver color in anhinga (Anhinga anhinga) feathers. J Morphol 272(11):1399–1407. CrossRefPubMedGoogle Scholar
  59. Stavenga DG, Leertouwer HL, Marshall NJ, Osorio D (2010) Dramatic colour changes in a bird of paradise caused by uniquely structured breast feather barbules. Proc Roy Soc B 278(1715):2098–2104. CrossRefGoogle Scholar
  60. Stavenga DG, Stowe S, Siebke K, Zeil J, Arikawa K (2004) Butterfly wing colours: scale beads make white pierid wings brighter. Proc Roy Soc B 271(1548):1577–1584. CrossRefGoogle Scholar
  61. Stavenga DG, Tinbergen J, Leertouwer HL, Wilts BD (2011) Kingfisher feathers–colouration by pigments, spongy nanostructures and thin films. J Exp Biol 214(23):3960–3967. CrossRefPubMedGoogle Scholar
  62. Stettenheim PR (2000) The integumentary morphology of modern birds—an overview 1. Am Zool 40(4):461–477.[0461:TIMOMB]2.0.CO;2Google Scholar
  63. Stoddard MC, Prum RO (2011) How colorful are birds? Evolution of the avian plumage color gamut. Behav Ecol 22(5):1042–1052. CrossRefGoogle Scholar
  64. Surmacki A, Nowakowski JK (2007) Soil and preen waxes influence the expression of carotenoid-based plumage coloration. Naturwissenschaften 94(10):829–835. CrossRefPubMedGoogle Scholar
  65. Thompson CW, Moore MC (1991) Throat colour reliably signals status in male tree lizards, Urosaurus ornatus. Anim Behav 42(5):745–753. CrossRefGoogle Scholar
  66. Tickell WLN (2003) White plumage. Waterbirds 26(1):1–12.[0001:WP]2.0.CO;2Google Scholar
  67. Tung Ho L, Ané C (2014) A linear-time algorithm for Gaussian and non-Gaussian trait evolution models. Syst Biol 63(3):397–408. CrossRefGoogle Scholar
  68. Vignolini S, Thomas MM, Kolle M, Wenzel T, Rowland A, Rudall PJ, Baumberg JJ, Glover BJ, Steiner U (2012) Directional scattering from the glossy flower of Ranunculus: how the buttercup lights up your chin. J R Soc Interface 9(71):1295–1301. CrossRefPubMedGoogle Scholar
  69. Vukusic P, Hallam B, Noyes J (2007) Brilliant whiteness in ultrathin beetle scales. Science 315(5810):348–348. CrossRefPubMedGoogle Scholar
  70. Wiersma DS (2013) Disordered photonics. Nat Photonics 7(3):188–196. CrossRefGoogle Scholar
  71. Wilts BD, Matsushita A, Arikawa K, Stavenga DG (2015) Spectrally tuned structural and pigmentary coloration of birdwing butterfly wing scales. J R Soc Interface 12(111):20150717. CrossRefPubMedPubMedCentralGoogle Scholar
  72. Young CM, Cain KE, Svedin N, Backwell PRY, Pryke SR (2016) The role of pigment based plumage traits in resolving conflicts. J Avian Biol 47(2):167–175. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of BiologyThe University of AkronAkronUSA
  2. 2.Division of Ecology and Evolution, Research School of BiologyAustralian National UniversityCanberraAustralia
  3. 3.Department of Biology, Evolution and Optics of Nanostructures GroupUniversity of GhentGhentBelgium

Personalised recommendations