Was endothermy in amniotes induced by an early stop in growth during ontogeny?

Abstract

Endothermy and its evolution are still an unresolved issue. Here, we present a model which transforms an ectothermic amniote (ancestor) into a derived amniote (descendant) showing many characteristics seen in extant endothermic birds and mammals. Consistent with the fossil record within the ancestral lineages of birds and mammals, the model assumes that mutations in genes which get active during ontogeny and affect body growth resulted in a reduced asymptotic body size and an early growth stop of the descendant. We show that such a postulated early growth stop in the descendant simultaneously increases the growth rate and metabolic rate, and also changes six life history traits (offspring mass, annual clutch/litter mass, number of offspring per year, age and mass at which sexual maturity is reached, age at which the individual is fully grown) of the descendant compared to a similar-sized ancestor. All these changes coincide with known differences between recent ectothermic and endothermic amniotes. We also elaborate many other differences and similarities in biological characteristics supporting the early growth stop. An early stop in growth during ontogeny thus could have played a key role in the evolution of endothermy within the reptilia and therapsids. It generated variability in characteristics of ancestral ectotherms, which was subject to natural selection in the past and resulted in many adaptations linked to endothermy in today’s birds and mammals.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Alberch P (1980) Ontogenesis and morphological diversification. Am Zool 20:653–667. https://doi.org/10.1093/icb/20.4.653

    Article  Google Scholar 

  2. Alberch P, Gould SJ, Oster GF, Wake DB (1979) Size and shape in ontogeny and phylogeny. Paleobiology 5:296–317. https://doi.org/10.2307/2400262

    Article  Google Scholar 

  3. Andrews RM, Pough FH (1985) Metabolism of squamate reptiles: allometric and ecological relationships. Physiol Zool 58:214–231

    Article  Google Scholar 

  4. Bennett A, Ruben J (1979) Endothermy and activity in vertebrates. Science 206:649–654. https://doi.org/10.1126/science.493968

    CAS  Article  PubMed  Google Scholar 

  5. Bertalanffy LV (1957) Quantitative laws in metabolism and growth. Q Rev Biol 32:217–231

    Article  Google Scholar 

  6. Bhullar B-AS, Marugan-Lobon J, Racimo F, Bever GS, Rowe TB, Norell MA, Abzhanov A (2012) Birds have paedomorphic dinosaur skulls. Nature 487:223–226

    CAS  Article  PubMed  Google Scholar 

  7. Bhullar B-AS et al. (2015) A molecular mechanism for the origin of a key evolutionary innovation, the bird beak and palate, Revealed by an integrative approach to major transitions in vertebrate history evolution. https://doi.org/10.1111/evo.12684

  8. Blueweiss L, Fox H, Kudzma V, Nakashima D, Peters R, Sams S (1978) Relationships between body size and some life history parameters. Oecologia 37:257–272

    CAS  Article  PubMed  Google Scholar 

  9. Brown JH, Gillooly JF, Allen AP, Savage VM, West GB (2004) Toward a metabolic theory of ecology. Ecology 85:1771–1789

    Article  Google Scholar 

  10. Case TJ (1978) On the evolution and adaptive significance of postnatal-growth rates in terrestrial vertebrates. Q Rev Biol 53:243–282

    CAS  Article  PubMed  Google Scholar 

  11. Clarke A, Pörtner H-O (2010) Temperature, metabolic power and the evolution of endothermy. Biol Rev 85:703–727. https://doi.org/10.1111/j.1469-185X.2010.00122.x

    PubMed  Google Scholar 

  12. Cowles RB (1940) Additional implications of reptilian sensitivity to high temperatures. Am Nat 74:542–561. https://doi.org/10.2307/2457334

    Article  Google Scholar 

  13. Dol'nik VR (2000) Allometry of reproduction in poikilotherm and homoiotherm vertebrates. Biol Bull 27:702–712

    Article  Google Scholar 

  14. Ernest SKM et al (2003) Thermodynamic and metabolic effects on the scaling of production and population energy use. Ecol Lett 6:990–995

    Article  Google Scholar 

  15. Farmer CG (2000) Parental care: the key to understanding endothermy and other convergent features in birds and mammals. Am Nat 155:326–334

    CAS  Article  PubMed  Google Scholar 

  16. Farmer CG (2003) Reproduction: the adaptive significance of endothermy. Am Nat 162:826–840

    CAS  Article  PubMed  Google Scholar 

  17. Fitzhugh HA (1976) Analysis of growth curves and strategies for altering their shape. J Anim Sci 42:1036–1051

    Article  PubMed  Google Scholar 

  18. Gaillard JM, Pontier D, Allaine D, Loison A, Herve JC, Heizmann A (1997) Variation in growth form and precocity at birth in eutherian mammals. Proc R Soc Lond B 264:859–868

    CAS  Article  Google Scholar 

  19. Grady JM, Enquist BJ, Dettweiler-Robinson E, Wright NA, Smith FA (2014) Evidence for mesothermy in dinosaurs. Science 344:1268–1272. https://doi.org/10.1126/science.1253143

    CAS  Article  PubMed  Google Scholar 

  20. Gregory TR (2001) The bigger the C-value, the larger the cell: genome size and red blood cell size in vertebrates. Blood Cell Mol Dis 27:830–843. https://doi.org/10.1006/bcmd.2001.0457

    CAS  Article  Google Scholar 

  21. Gregory TR (2002) A bird's-eye view of the c-value enigma: genome size, cell size, and metabolic rate in the class aves. Evolution 56:121–130. https://doi.org/10.1111/j.0014-3820.2002.tb00854.x

    CAS  Article  PubMed  Google Scholar 

  22. Grigg GC, Beard LA, Augee ML (2004) The evolution of endothermy and its diversity in mammals and birds. Physiol Biochem Zool 77:982–997. https://doi.org/10.1086/425188

    Article  PubMed  Google Scholar 

  23. Hulbert AJ (2000) Thyroid hormones and their effects: a new perspective. Biol Rev 75:519–631. https://doi.org/10.1111/j.1469-185X.2000.tb00054.x

    CAS  Article  PubMed  Google Scholar 

  24. Hulbert A (2014) A sceptics view: “Kleiber’s Law” or the “3/4 Rule” is neither a law nor a rule but rather an empirical approximation. Systems 2:186

    Article  Google Scholar 

  25. Hulbert AJ, Else PL (1981) Comparison of the “mammal machine” and the “reptile machine”: energy use and thyroid activity AJP - regulatory. Integr Comp Physiol 241:R350–R356

    CAS  Google Scholar 

  26. Hulbert A, Else P (1990) The cellular basis of endothermic metabolism: a role for “leaky” membranes? Physiology 5:25–28

    CAS  Google Scholar 

  27. Hulbert AJ, Else PL (1999) Membranes as possible pacemakers of metabolism. J Theor Biol 199:257–274

    CAS  Article  PubMed  Google Scholar 

  28. Hulbert AJ, Else PL (2005) Membranes and the setting of energy demand. J Exp Biol 208:1593–1599. https://doi.org/10.1242/jeb.01482

    CAS  Article  PubMed  Google Scholar 

  29. Kemp TS (1988) Haemothermia or Archosauria? The interrelationships of mammals, birds and crocodiles. Zool J Linnean Soc 92:67–104. https://doi.org/10.1111/j.1096-3642.1988.tb01527.x

    Article  Google Scholar 

  30. Kemp TS (2006a) The origin and early radiation of the therapsid mammal-like reptiles: a palaeobiological hypothesis. J Evol Biol 19:1231–1247

    CAS  Article  PubMed  Google Scholar 

  31. Kemp TS (2006b) The origin of mammalian endothermy: a paradigm for the evolution of complex biological structure. Zool J Linnean Soc 147:473–488. https://doi.org/10.1111/j.1096-3642.2006.00226.x

    Article  Google Scholar 

  32. Koteja P (2000) Energy assimilation, parental care and the evolution of endothermy. Proc R Soc Lond B 267:479–484. https://doi.org/10.1098/rspb.2000.1025

    CAS  Article  Google Scholar 

  33. Koteja P (2004) The evolution of concepts on the evolution of endothermy in birds and mammals. Physiol Biochem Zool 77:1043–1050

    Article  PubMed  Google Scholar 

  34. Lee AH, Werning S (2008) Sexual maturity in growing dinosaurs does not fit reptilian growth models. PNAS 105:582–587

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. Little AG, Seebacher F (2014) The evolution of endothermy is explained by thyroid hormone-mediated responses to cold in early vertebrates. J Exp Biol 217:1642–1648. https://doi.org/10.1242/jeb.088880

    CAS  Article  PubMed  Google Scholar 

  36. Lovegrove BG (2012) The evolution of endothermy in Cenozoic mammals: a plesiomorphic-apomorphic continuum. Biol Rev 87:128–162. https://doi.org/10.1111/j.1469-185X.2011.00188.x

    Article  PubMed  Google Scholar 

  37. McClure PA, Randolph JC (1980) Relative allocation of energy to growth and development of homeothermy in the eastern wood rat (Neotoma Floridana) and hispid cotton rat (Sigmodon Hispidus). Ecol Monogr 50:199–219

    Article  Google Scholar 

  38. McNab BK (1978) The evolution of endothermy in the phylogeny of mammals. Am Nat 112:1–21. https://doi.org/10.2307/2460134

    Article  Google Scholar 

  39. McNab BK (2008) An analysis of the factors that influence the level and scaling of mammalian BMR. Comp Biochem Phys A 151:5–28

    Article  Google Scholar 

  40. McNab BK (2009) Ecological factors affect the level and scaling of avian BMR. Comp Biochem Phys A 152:22–45

    Article  Google Scholar 

  41. Müller GB (1989) Ancestral patterns in bird limb development: a new look at Hampé's experiment. J Evol Biol 2:31–47. https://doi.org/10.1046/j.1420-9101.1989.2010031.x

    Article  Google Scholar 

  42. Müller GB, Alberch P (1990) Ontogeny of the limb skeleton in Alligator Mississippiensis: developmental invariance and change in the evolution of archosaur limbs. J Morphol 203:151–164. https://doi.org/10.1002/jmor.1052030204

    Article  Google Scholar 

  43. Newman SA, Mezentseva NV, Badyaev AV (2013) Gene loss, thermogenesis, and the origin of birds. Ann N Y Acad Sci 1289:36–47. https://doi.org/10.1111/nyas.12090

    CAS  Article  PubMed  Google Scholar 

  44. Organ CL, Shedlock AM (2009) Palaeogenomics of pterosaurs and the evolution of small genome size in flying vertebrates. Biol Lett 5:47–50. https://doi.org/10.1098/rsbl.2008.0491

    Article  PubMed  Google Scholar 

  45. Organ CL, Shedlock AM, Meade A, Pagel M, Edwards SV (2007) Origin of avian genome size and structure in nonavian dinosaurs. Nature 446:180–184. https://doi.org/10.1038/nature05621

    CAS  Article  PubMed  Google Scholar 

  46. Pardo SA, Cooper AB, Dulvy NK (2013) Avoiding fishy growth curves. Methods Ecol Evol 4:353–360. https://doi.org/10.1111/2041-210x.12020

    Article  Google Scholar 

  47. Pauly D (1980) On the interrelationships between natural mortality, growth parameters, and mean environmental temperature in 175 fish stocks. J Conseil 39:175–192. https://doi.org/10.1093/icesjms/39.2.175

    Article  Google Scholar 

  48. Pörtner HO (2004) Climate variability and the energetic pathways of evolution: the origin of endothermy in mammals and birds. Physiol Biochem Zool 77:959–981. https://doi.org/10.1086/423742

    Article  PubMed  Google Scholar 

  49. Ricklefs RE (1979) Patterns of growth in birds. V. A comparative study of development in the Starling, common tern, and Japanese quail. Auk 96:10–30

    Google Scholar 

  50. Ricklefs RE (1987) Characterizing the development of homeothermy by rate of body cooling. Funct Ecol 1:151–157. https://doi.org/10.2307/2389719

    Article  Google Scholar 

  51. Ricklefs RE (2010) Life-history connections to rates of aging in terrestrial vertebrates. Proc Natl Acad Sci U S A 107:10314–10319. https://doi.org/10.1073/pnas.1005862107

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. Ruben J (1995) The evolution of endothermy in mammals and birds: from physiology to fossils. Annu Rev Physiol 57:69–95

    CAS  Article  PubMed  Google Scholar 

  53. Sánchez-Villagra MR (2010) Developmental palaeontology in synapsids: the fossil record of ontogeny in mammals and their closest relatives. Proc R Soc Lond B. https://doi.org/10.1098/rspb.2009.2005

  54. Schweitzer MH, Marshall CL (2001) A molecular model for the evolution of endothermy in the theropod-bird lineage. J Exp Zool 291:317–338

    CAS  Article  PubMed  Google Scholar 

  55. Seebacher F, Schwartz TS, Thompson MB (2006) Transition from ectothermy to endothermy: the development of metabolic capacity in a bird (Gallus gallus). 273(1586). https://doi.org/10.1098/rspb.2005.3333

  56. Shine R (2005) Life-history evolution in reptiles. Annu Rev Ecol Evol Syst 36:23–46

    Article  Google Scholar 

  57. Shine R, Charnov EL (1992) Patterns of survival, growth, and maturation in snakes and lizards. Am Nat 139:1257–1269

    Article  Google Scholar 

  58. Shine R, Iverson JB (1995) Patterns of survival, growth and maturation in turtles. Oikos 72:343–348

    Article  Google Scholar 

  59. Sieg AE, O'Connor MP, McNair JN, Grant BW, Agosta SJ, Dunham AE (2009) Mammalian metabolic allometry: do intraspecific variation, phylogeny, and regression models matter? Am Nat 174:720–733

    Article  PubMed  Google Scholar 

  60. Silva JE (2003) The thermogenic effect of thyroid hormone and its clinical implications. Ann Intern Med 139:205–213. https://doi.org/10.7326/0003-4819-139-3-200308050-00018

    CAS  Article  PubMed  Google Scholar 

  61. Silva JE (2006) Thermogenic mechanisms and their hormonal regulation. Physiol Rev 86:435–464. https://doi.org/10.1152/physrev.00009.2005

    CAS  Article  PubMed  Google Scholar 

  62. Starck JM, Ricklefs RE (eds) (1998) Avian growth and development, Evolution within the altricial-precocial spectrum. Oxford University Press, New York

    Google Scholar 

  63. Turner AH, Pol D, Clarke JA, Erickson GM, Norell MA (2007) A basal dromaeosaurid and size evolution preceding avian flight. Science 317:1378–1381

    CAS  Article  PubMed  Google Scholar 

  64. Visser GH, Ricklefs RE (1995) Relationship between body composition and homeothermy in neonates of precocial and semiprecocial birds. Auk 112:192–200

    Article  Google Scholar 

  65. Werner J, Griebeler EM (2011) Reproductive biology and its impact on body size: comparative analysis of mammalian, avian and dinosaurian reproduction. PLoS One 6:e28442. https://doi.org/10.1371/journal.pone.0028442

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  66. Werner J, Griebeler EM (2013) New insights into non-avian dinosaur reproduction and their evolutionary and ecological implications: linking fossil evidence to allometries of extant close relatives. PLoS One 8:e72862. https://doi.org/10.1371/journal.pone.0072862

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  67. Werner J, Griebeler EM (2014) Allometries of maximum growth rate versus body mass at maximum growth indicate that non-avian dinosaurs had growth rates typical of fast growing ectothermic sauropsids. PLoS One 9:e88834. https://doi.org/10.1371/journal.pone.0088834

    Article  PubMed  PubMed Central  Google Scholar 

  68. West GB, Brown JH, Enquist BJ (2001) A general model for ontogenetic growth. Nature 413:628–631

    CAS  Article  PubMed  Google Scholar 

  69. Xu X, Zhou Z, Dudley R, Mackem S, Chuong C-M, Erickson GM, Varricchio DJ (2014) An integrative approach to understanding bird origins. Science 346. https://doi.org/10.1126/science.1253293

  70. Zullinger EM, Ricklefs RE, Redford KH, Mace GM (1984) Fitting sigmoidal equations to mammalian growth curves. J Mammal 65:607–636

    Article  Google Scholar 

Download references

Acknowledgements

This work was not possible without earlier work of many other researchers dealing with metabolism, endothermy, evolution or growth. JW thanks Alfred Seitz (†) for his open mind, Martin Sander for arousing JWs interest in dinosaur metabolism and EMG for her good coaching and fruitful discussions. JW developed the model, designed and conducted the analyses and wrote the manuscript. EMG helped in discussion, focusing ideas and worked on the manuscript text. JW was partially financed by the German Research Foundation (grant GR 2625/2-2) and by the Johannes Gutenberg University of Mainz Centre for Computational Sciences (SRFN).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jan Werner.

Additional information

Communicated by: Sven Thatje

Electronic supplementary material

ESM 1

(DOCX 419 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Werner, J., Griebeler, E.M. Was endothermy in amniotes induced by an early stop in growth during ontogeny?. Sci Nat 104, 90 (2017). https://doi.org/10.1007/s00114-017-1513-1

Download citation

Keywords

  • Birds
  • Mammals
  • Reptiles
  • Ectothermy
  • Model
  • Life history