Advertisement

The Science of Nature

, 104:87 | Cite as

Vegaviidae, a new clade of southern diving birds that survived the K/T boundary

  • Federico L. Agnolín
  • Federico Brissón Egli
  • Sankar Chatterjee
  • Jordi Alexis Garcia Marsà
  • Fernando E. Novas
Original Paper

Abstract

The fossil record of Late Cretaceous–Paleogene modern birds in the Southern Hemisphere includes the Maastrichtian Neogaeornis wetzeli from Chile, Polarornis gregorii and Vegavis iaai from Antarctica, and Australornis lovei from the Paleogene of New Zealand. The recent finding of a new and nearly complete Vegavis skeleton constitutes the most informative source for anatomical comparisons among Australornis, Polarornis, and Vegavis. The present contribution includes, for the first time, Vegavis, Polarornis, and Australornis in a comprehensive phylogenetic analysis. This analysis resulted in the recognition of these taxa as a clade of basal Anseriformes that we call Vegaviidae. Vegaviids share a combination of characters related to diving adaptations, including compact and thickened cortex of hindlimb bones, femur with anteroposteriorly compressed and bowed shaft, deep and wide popliteal fossa delimited by a medial ridge, tibiotarsus showing notably proximally expanded cnemial crests, expanded fibular crest, anteroposterior compression of the tibial shaft, and a tarsometatarsus with a strong transverse compression of the shaft. Isolated bones coming from the Cretaceous and Paleogene of South America, Antarctica, and New Zealand are also referred to here to Vegaviidae and support the view that these basal anseriforms were abundant and diverse at high southern latitudes. Moreover, vegaviids represent the first avian lineage to have definitely crossed the K–Pg boundary, supporting the idea that some avian clades were not affected by the end Mesozoic mass extinction event, countering previous interpretations. Recognition of Vegaviidae indicates that modern birds were diversified in southern continents by the Cretaceous and reinforces the hypothesis indicating the important role of Gondwana for the evolutionary history of Anseriformes and Neornithes as a whole.

Keywords

Vegavis Vegaviidae Gondwana Neornithes 

Notes

Acknowledgements

Special thanks to Y. Davies and S. Bogan who allowed reviewing material under their care. We are deeply indebted to S. Lucero, S. Rozadilla, G. Lo Coco, M. Motta, M. Aranciaga Rolando, and J. D’Angelo for their comments and discussion about early bird radiations. Julia Clarke and Trevor Worthy made valuable comments on an early draft of this manuscript. Special thanks to T. Worthy for his enlightening comments on Vegavis specimen and discussions regarding its phylogenetic position. We also like to thank the anonymous reviewers who made valuable comments that greatly improved the quality of this paper. We thank M. Isasi who skillfully prepared the specimen MACN-PV 19.748 of Vegavis.

Supplementary material

114_2017_1508_MOESM1_ESM.doc (4.6 mb)
ESM 1 (DOC 4726 kb).

References

  1. Acosta Hospitaleche C, Gelfo JN (2015) New Antarctic findings of Upper Cretaceous and lower Eocene loons (Aves: Gaviiformes). In: Annales de Paléontologie (vol 101, no. 4, pp 315–324). Elsevier Masson, FranceGoogle Scholar
  2. Agnolin FL, Ezcurra MD, Pais DF, Salisbury W (2010) A reappraisal of the Cretaceous nonavian dinosaur faunas from Australia and New Zealand, evidence for their Gondwanan affinities. J Syst Palaeontol 8:257–300CrossRefGoogle Scholar
  3. Bogan S, Agnolin FL, Novas FE (2016) New Selachian records from the Upper Cretaceous of Southern Patagonia, paleobiogeographical implications and the description of a new taxon. J. Vert. Paleont 36(3):e1105235CrossRefGoogle Scholar
  4. Bono RK, Clarke J, Tarduno JA, Brinkman D (2016) A large ornithurine bird (Tingmiatornis arctica) from the Turonian High Arctic: climatic and evolutionary implications. Sci Rep 6:38876CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bourdon E (2005) Osteological evidence for sister group relationship between pseudo-toothed birds (Aves: Odontopterygiformes) and waterfowls (Anseriformes). Naturwissenschaften 92(12):586–591CrossRefPubMedGoogle Scholar
  6. Case J, Tambussi CP (1999) Maastrichtian record of neornithine birds in Antarctica, comments on a Late Cretaceous radiation of modern birds. J. Vert. Paleont 19(3, Suppl):37AGoogle Scholar
  7. Case JA, Woodburne MO, Chaney DS (1988) A new genus and species of polydolopid marsupial from the La Meseta Formation, Late Eocene, Seymour Island, Antarctic Peninsula. In: Feldmann RM, Woodburne MO (eds) Geology and paleontology of Seymour Island. Geological Society of America, Boulder, pp 505–521CrossRefGoogle Scholar
  8. Case J, Reguero M, Martin J, Cordes-Person A (2006) A cursorial bird from the Maastrichtian of Antarctica. J Vertebr Paleontol 26(3, Supplement):48AGoogle Scholar
  9. Cenizo MM (2012) Review of the putative Phorusrhacidae from the Cretaceous and Paleogene of Antarctica: new records of ratites and pelagornithid birds. Pol Polar Res 33(3):239–258Google Scholar
  10. Chatterjee S (2002) The morphology and systematics of Polarornis, a Cretaceous loon (Aves, Gaviidae) from Antarctica. In: Zhou Z, Zhang F (eds) Proceedings of the 5th Symposium of the Society of Avian Paleontology and Evolution. Science Press, Beijing, pp 125–155Google Scholar
  11. Chatterjee S, Martinioni D, Novas F, Mussel F, Templin R (2006) A new fossil loon from the Late Cretaceous of Antarctica and early radiation of foot-propelled diving birds. J Vertebr Paleontol 26:49AGoogle Scholar
  12. Chiappe LM (1996) Early avian evolution in the Southern Hemisphere, the fossil record of birds in the Mesozoic of Gondwana. Mem Queensland Mus 39:533–554Google Scholar
  13. Chiappe LM (2016) Birds of stone, Chinese avian fossils from the age of dinosaurs. 304 pp. Johns Hopkins University Press, BaltimoreGoogle Scholar
  14. Chinsamy A (2002) Bone microstructure of early birds. In: Chiappe LM, Witmer LM (eds) Mesozoic birds, above the heads of dinosaurs. Univ. California Press, Berkeley, pp 421–431Google Scholar
  15. Chinsamy A, Martin LD, Dodson P (1998) Bone microstructure of the diving Hesperornis and the volant Ichthyornis from the Niobrara Chalk of western Kansas. Cretac Res 19:225–235CrossRefGoogle Scholar
  16. Clarke JA, Tambussi CP, Noriega JI, Erickson GM, Ketcham RA (2005) Definitive fossil evidence for the extant avian radiation in the Cretaceous. Nature 433:305–308CrossRefPubMedGoogle Scholar
  17. Clarke JA, Chatterjee S, Li Z, Riede T, Agnolin F, Goller F, Novas FE (2016) Fossil evidence of the avian vocal organ from the Mesozoic. Nature 538(7626):502–505CrossRefPubMedGoogle Scholar
  18. Cooper A, Penny D (1997) Mass survival of birds across the Cretaceous–Tertiary boundary, Molecular evidence. Science 275:1109–1113CrossRefPubMedGoogle Scholar
  19. Cordes AH (2002) A new charadriiform avian specimen from the early Maastrichtian of Cape Lamb, Vega Island, Antarctic Peninsula. J Vertebr Paleontol 22:99AGoogle Scholar
  20. Cracraft J (2001) Avian evolution, Gondwana biogeography, and the Cretaceous–Tertiary mass extinction event. Proc. Roy. Soc. London B 1268:459–469CrossRefGoogle Scholar
  21. Cracraft J, Clarke J (2001) The basal clades of modern birds. In: New perspectives on the origin and early evolution of birds: proceedings of the international symposium in honor of John H. Ostrom. Peabody Museum of Natural History, New Haven, pp 143–152Google Scholar
  22. De Mendoza R, Tambussi C (2015) Osteosclerosis in the extinct Cayaoa bruneti (Aves, Anseriformes). Insights on behavior and flightlessness. Ameghiniana 52:305–313CrossRefGoogle Scholar
  23. De Pietri VL, Scofield RP, Zelenkov N, Boles WE, Worthy TH (2016) The unexpected survival of an ancient lineage of anseriform birds into the Neogene of Australia: the youngest record of Presbyornithidae. Open Sci 3(2):150635Google Scholar
  24. Dzerzhinsky FY (1995) Evidence for common ancestry of the Galliformes and Anseriformes. Cour Forschungsinst Senck 181:325–336Google Scholar
  25. Ericson PG (1997) Systematic relationships of the Palaeogene family Presbyornithidae (Aves: Anseriformes). Zool J Linnean Soc 121(4):429–483CrossRefGoogle Scholar
  26. Ericson PG, Anderson CL, Britton T, Elzanowski A, Johansson US, Källersjö M, Mayr G (2006) Diversification of Neoaves: integration of molecular sequence data and fossils. Biol Lett 2(4):543–547CrossRefPubMedPubMedCentralGoogle Scholar
  27. Feduccia A (1999) The origin and evolution of birds. Yale University Press, New Haven 245 ppGoogle Scholar
  28. Feduccia A (2003) “Big Bang” for Tertiary birds? Trends Ecol. Evolution 16:172–176Google Scholar
  29. Feduccia A (2014) Avian extinction at the end of the Cretaceous: assessing the magnitude and subsequent explosive radiation. Cretac Res 50:1–15CrossRefGoogle Scholar
  30. Garcia Marsà JA, Agnolín FL, Novas F (2017) Bone microstructure of Vegavis iaai (Aves, Anseriformes) from the Upper Cretaceous of Vega Island, Antarctic Peninsula Historical Biology, 1–5Google Scholar
  31. Hedges SB, Parker PH, Sibley CG, Kumar S (1996) Continental breakup and the ordinal diversification of birds and mammals. Nature 381(6579):226CrossRefPubMedGoogle Scholar
  32. Hope S (2002) The Mesozoic radiation of Neornithes. In: Chiappe LM, Witmer LM (eds) Mesozoic birds, above the heads of dinosaurs. Berkeley University Press, Berkeley, pp 168–218Google Scholar
  33. Humphrey PS, Livezey BC (1982) Flightlessness in flying steamer-ducks. Auk 99:368–372Google Scholar
  34. Ibañez B, Tambussi CP (2012) Foot-propelled aquatic birds, pelvic morphology and locomotor performance. Ital J Zool 79:356–362CrossRefGoogle Scholar
  35. Ksepka DT, Cracraft J (2008) An avian tarsometatarsus from near the KT boundary of New Zealand. J Vertebr Paleontol 28(4):1224–1227CrossRefGoogle Scholar
  36. Longrich N (2008) An ornithurine-dominated avifauna from the Belly River Group (Campanian, Upper Cretaceous) of Alberta, Canada. Cret Res 30:161–177CrossRefGoogle Scholar
  37. Longrich NR, Tokaryk T, Field DJ (2011) Mass extinction of birds at the Cretaceous–Paleogene (K–Pg) boundary. PNAS 108:15253–15257CrossRefPubMedPubMedCentralGoogle Scholar
  38. Mayr G (2008) Phylogenetic affinities and morphology of the late Eocene anseriform bird Romainvillia stehlini Lebedinsky, 1927. Neues Jahrb Geol Paläontol-Abh 248(3):365–380CrossRefGoogle Scholar
  39. Mayr G (2009) Paleogene fossil birds. Springer, Berlin 262 ppCrossRefGoogle Scholar
  40. Mayr G (2011) Metaves, Mirandornithes, Strisores and other novelties—a critical review of the higher-level phylogeny of neornithine birds. J Zool Syst Evol Res 49(1):58–76CrossRefGoogle Scholar
  41. Mayr G, Clarke J (2003) The deep divergences of neornithine birds: a phylogenetic analysis of morphological characters. Cladistics 19:527–553CrossRefGoogle Scholar
  42. Mayr G, Poschmann M (2009) A loon leg (Aves, Gaviidae) with crocodilian tooth from the late Oligocene of Germany. Waterbirds 32(3):468–471CrossRefGoogle Scholar
  43. Mayr G, Scofield RP (2014) First diagnosable non-sphenisciform bird from the early Paleocene of New Zealand. J R Soc N Z 44(1):48–56CrossRefGoogle Scholar
  44. Mayr G, Zvonok E, Gorobets L (2013) The tarsometatarsus of the middle Eocene loon Colymbiculus udovichenkoi. In: Göhlich UB, Kroh A (eds) Paleornithological research 2013—proceedings of the 8th International Meeting of the Society of Avian Paleontology and Evolution. Natural History Museum Vienna, Vienna, pp 17–22 306 ppGoogle Scholar
  45. Noriega JI, Tambussi CP (1995) A Late Cretaceous Presbyornithidae (Aves: Anseriformes) from Vega Island, Antarctic Peninsula: paleobiogeographic implications. Ameghiniana 32(1):57–61Google Scholar
  46. Noriega JI, Tambussi CP, Cozzuol MA (2008) New material of Cayaoa bruneti Tonni, an early Miocene anseriform (Aves) from Patagonia, Argentina. Neues Jahrb Geol Paläontol-Abh 249(3):271–280CrossRefGoogle Scholar
  47. Novas FE, Cambiaso AV, Lirio JM, Núñez HJ (2002) Paleobiogeografía de los dinosaurios polares de Gondwana. Ameghiniana 39:15RGoogle Scholar
  48. O'Connor PM, Forster CA (2010) A Late Cretaceous (Maastrichtian) avifauna from the Maevarano Formation, Madagascar. J Vertebr Paleontol 30(4):1178–1201CrossRefGoogle Scholar
  49. Olson SL (1992) Neogaeornis wetzeli Lambrecht, a Cretaceous loon from Chile (Aves, Gaviidae). J Vert Paleont 12:122–124CrossRefGoogle Scholar
  50. Olson SL, Feduccia A (1980) Presbyornis and the origin of the Anseriformes (Aves: Charadriomorphae) (No. 598.2 OLSp). Smithsonian Institution PressGoogle Scholar
  51. Padian K, Chiappe LM (1998) The origin and early evolution of birds. Biol Rev 73(1):1–42CrossRefGoogle Scholar
  52. Padian K, de Ricqlés AJ, Horner JR (2001) Dinosaurian growth rates and bird origins. Nature 412:405–408CrossRefPubMedGoogle Scholar
  53. Reguero M, Goin F, Acosta Hospitaleche C, Dutra T, Marenssi S (2013) Late Cretaceous/Paleogene West Antarctica terrestrial biota and its intercontinental affinities, p 120Google Scholar
  54. Rozadilla S, Agnolin FL, Novas FE, Aranciaga AR, Motta MJ, Lirio JM, Isasi MP (2016) A new ornithopod (Dinosauria, Ornithischia) from the Upper Cretaceous of Antarctica and its palaeobiogeographical implications. Cretac Res 57:311–324CrossRefGoogle Scholar
  55. Smith ND (2010) Phylogenetic analysis of Pelecaniformes (Aves) based on osteological data: implications for waterbird phylogeny and fossil calibration studies. PLoS One 5(10):e13354CrossRefPubMedPubMedCentralGoogle Scholar
  56. Smith NA, Clarke JA (2014) Osteological histology of the Pan-Alcidae (Aves, Charadriiformes), correlates of wing-propelled diving and flightlessness. Anat Rec 297:188–199CrossRefGoogle Scholar
  57. Tambussi CP, Degrange FJ (2013) The Paleogene birds of South America. In: South American and Antarctic Continental Cenozoic Birds. Springer Netherlands, pp 29–47Google Scholar
  58. Van Tuinen M, Hedges SB (2004) The effect of external and internal fossil calibrations on the avian evolutionary timescale. J Paleontol 78(1):45–50CrossRefGoogle Scholar
  59. Watanabe J, Matsuoka H (2015) Flightless diving duck (Aves, Anatidae) from the Pleistocene of Shiriya, northeast Japan. J Vertebr Paleontol 35(6):e994745CrossRefGoogle Scholar
  60. Weber E, Hesse A (1995) The systematic position of Aptornis, a flightless bird from New Zealand. Cour Forschungsinst Senck 181:293–301Google Scholar
  61. Woolfenden GE (1961) Postcranial osteology of the waterfowl. University of Florida, GainesvilleGoogle Scholar
  62. Worthy TH, Tennyson AJ, Jones C, McNamara JA, Douglas BJ (2007) Miocene waterfowl and other birds from Central Otago, New Zealand. J Syst Palaeontol 5(1):1–39CrossRefGoogle Scholar
  63. Worthy TH, Mitri M, Handley WD, Lee MS, Anderson A, Sand C (2016) Osteology supports a stem-galliform affinity for the giant extinct flightless bird Sylviornis neocaledoniae (Sylviornithidae, Galloanseres). PLoS One 11(3):e0150871CrossRefPubMedPubMedCentralGoogle Scholar
  64. Yury-Yáñez RE, Otero RA, Soto-Acuña S, Suárez ME, Rubilar-Rogers D, Sallaberry M (2012) First bird remains from the Eocene of Algarrobo, central Chile. Andean Geol 39(3):548–557.Google Scholar
  65. Zelenkov NV (2012) A new duck from the Middle Miocene of Mongolia, with comments on Miocene evolution of ducks. Paleontol J 46(5):520–530CrossRefGoogle Scholar
  66. Zinsmeister WJ (1982) Late Cretaceous–Early Tertiary molluscan biogeography of the southern circum-Pacific. J Paleontol 56:84–102Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Federico L. Agnolín
    • 1
    • 2
  • Federico Brissón Egli
    • 1
    • 3
  • Sankar Chatterjee
    • 4
  • Jordi Alexis Garcia Marsà
    • 1
    • 3
  • Fernando E. Novas
    • 1
    • 3
  1. 1.Laboratorio de Anatomía Comparada y Evolución de los Vertebrados, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”Buenos AiresArgentina
  2. 2.Fundación de Historia Natural “Félix de Azara”Universidad MaimónidesBuenos AiresArgentina
  3. 3.CONICETBuenos AiresArgentina
  4. 4.Museum of Texas Tech UniversityLubbockUSA

Personalised recommendations