Extreme longevity in a deep-sea vestimentiferan tubeworm and its implications for the evolution of life history strategies

Abstract

The deep sea is home to many species that have longer life spans than their shallow-water counterparts. This trend is primarily related to the decline in metabolic rates with temperature as depth increases. However, at bathyal depths, the cold-seep vestimentiferan tubeworm species Lamellibrachia luymesi and Seepiophila jonesi reach extremely old ages beyond what is predicted by the simple scaling of life span with body size and temperature. Here, we use individual-based models based on in situ growth rates to show that another species of cold-seep tubeworm found in the Gulf of Mexico, Escarpia laminata, also has an extraordinarily long life span, regularly achieving ages of 100–200 years with some individuals older than 300 years. The distribution of results from individual simulations as well as whole population simulations involving mortality and recruitment rates support these age estimates. The low 0.67% mortality rate measurements from collected populations of E. laminata are similar to mortality rates in L. luymesi and S. jonesi and play a role in evolution of the long life span of cold-seep tubeworms. These results support longevity theory, which states that in the absence of extrinsic mortality threats, natural selection will select for individuals that senesce slower and reproduce continually into their old age.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Andrews A, Cordes E, Mahoney M (2002) Age, growth and radiometric age validation of a deep-sea, habitat-forming gorgonian (Primnoa resedaeformis) from the Gulf of Alaska. Hydrobiologia 101–110

  2. Atanasov AT (2005) The linear alometric relationship between total metabolic energy per life span and body mass of poikilothermic animals. Biosystems 82:137–142. doi:10.1016/j.biosystems.2005.06.006

    Article  PubMed  Google Scholar 

  3. Austad SN (1993) Retarded senescence in an insular population of Virginia opossums (Didelphis virginiana). J Zool 229:695–708. doi:10.1111/j.1469-7998.1993.tb02665.x

    Article  Google Scholar 

  4. Becker EL, Cordes EE, Macko SA et al (2013) Using stable isotope compositions of animal tissues to infer trophic interactions in Gulf of Mexico lower slope seep communities. PLoS One 8:e74459. doi:10.1371/journal.pone.0074459

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bergquist D, Williams F, Fisher C (2000) Longevity record for deep-sea invertebrate. Nature 403:499–500

    CAS  Article  PubMed  Google Scholar 

  6. Bergquist D, Urcuyo I, Fisher C (2002) Establishment and persistence of seep vestimentiferan aggregations on the upper Louisiana slope of the Gulf of Mexico. Mar Ecol Prog Ser 241:89–98. doi:10.3354/meps241089

    Article  Google Scholar 

  7. Bergquist DC, Ward T, Cordes EE et al (2003) Community structure of vestimentiferan-generated habitat islands from Gulf of Mexico cold seeps. J Exp Mar Bio Ecol 289:197–222. doi:10.1016/S0022-0981(03)00046-7

    Article  Google Scholar 

  8. Bergquist D, Eckner J, Urcuyo I et al (2007) Using stable isotopes and quantitative community characteristics to determine a local hydrothermal vent food web. Mar Ecol Prog Ser 330:49–65. doi:10.3354/meps330049

    Article  Google Scholar 

  9. Cailliet G, Andrews A, Burton E et al (2001) Age determination and validation studies of marine fishes: do deep-dwellers live longer? Exp Gerontol 36:739–764. doi:10.1016/S0531-5565(00)00239-4

    CAS  Article  PubMed  Google Scholar 

  10. Childress JJ, Cowles DL, Favuzzi JA, Mickel TJ (1990) Metabolic rates of benthic deep-sea decapod crustaceans decline with increasing depth primarily due to the decline in temperature. Deep Sea Res Part A Oceanogr Res Pap 37:929–949. doi:10.1016/0198-0149(90)90104-4

    CAS  Article  Google Scholar 

  11. Cordes EE, Bergquist DC, Shea K, Fisher CR (2003) Hydrogen sulphide demand of long-lived vestimentiferan tube worm aggregations modifies the chemical environment at deep-sea hydrocarbon seeps. Ecol Lett 6:212–219. doi:10.1046/j.1461-0248.2003.00415.x

    Article  Google Scholar 

  12. Cordes EE, Arthur MA, Shea K et al (2005) Modeling the mutualistic interactions between tubeworms and microbial consortia. PLoS Biol 3:e77. doi:10.1371/journal.pbio.0030077

    Article  PubMed  PubMed Central  Google Scholar 

  13. Cordes EE, Bergquist DC, Redding ML, Fisher CR (2007) Patterns of growth in cold-seep vestimenferans including Seepiophila jonesi: a second species of long-lived tubeworm. Mar Ecol 28:160–168. doi:10.1111/j.1439-0485.2006.00112.x

    Article  Google Scholar 

  14. Cordes EE, Bergquist DC, Fisher CR (2009) Macro-Ecology of Gulf of Mexico cold seeps. Annu Rev Mar Sci 1:143–168. doi:10.1146/annurev.marine.010908.163912

    Article  Google Scholar 

  15. Cordes EE, Becker EL, Fisher CR (2010) Temporal shift in nutrient input to cold-seep food webs revealed by stable-isotope signatures of associated communities. Limnol Oceanogr 55:2537–2548. doi:10.4319/lo.2010.55.6.2537

    Article  Google Scholar 

  16. Cowart DA, Halanych KM, Schaeffer SW, Fisher CR (2014) Depth-dependent gene flow in Gulf of Mexico cold seep Lamellibrachia tubeworms ( Annelida, Siboglinidae ). Hydrobiologia 736:139–154. doi:10.1007/s10750-014-1900-y

    CAS  Article  Google Scholar 

  17. Dattagupta S, Miles LL, Barnabei MS, Fisher CR (2006) The hydrocarbon seep tubeworm Lamellibrachia luymesi primarily eliminates sulfate and hydrogen ions across its roots to conserve energy and ensure sulfide supply. J Exp Biol 209:3795–3805. doi:10.1242/jeb.02413

    CAS  Article  PubMed  Google Scholar 

  18. Deweerdt S (2012) Comparative biology: looking for a master switch. Nature 492:S10–S11. doi:10.1038/492S10a

    CAS  Article  PubMed  Google Scholar 

  19. Drazen JC, Seibel BA (2007) Depth-related trends in metabolism of benthic and benthopelagic deep-sea fishes. Limnol Oceanogr 52:2306–2316. doi:10.4319/lo.2007.52.5.2306

    CAS  Article  Google Scholar 

  20. Fisher CR (1990) Chemoautotrophic and methanotrophic symbioses in marine invertebrates. Rev Aquat Sci 2:399–436

    CAS  Google Scholar 

  21. Ingram WC, Meyers SR, Brunner CA, Martens CS (2010) Late Pleistocene–Holocene sedimentation surrounding an active seafloor gas-hydrate and cold-seep fi eld on the Northern Gulf of Mexico Slope. Mar Geol 278:43–53. doi:10.1016/j.margeo.2010.09.002

    CAS  Article  Google Scholar 

  22. Kirkwood TB, Austad SN (2000) Why do we age? Nature 408:233–238. doi:10.1038/35041682

    CAS  Article  PubMed  Google Scholar 

  23. Kohyama T, Takada T (1998) Recruitment rates in forest plots: Gf estimates using growth rates and size distributions. J Ecol 86:633–639

    Article  Google Scholar 

  24. McClain CR, Allen AP, Tittensor DP, Rex MA (2012) Energetics of life on the deep seafloor. Proc Natl Acad Sci 109:15366–15371. doi:10.1073/pnas.1208976109

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. McCoy MW, Gillooly JF (2008) Predicting natural mortality rates of plants and animals. Ecol Lett 11:710–716. doi:10.1111/j.1461-0248.2008.01190.x

    Article  PubMed  Google Scholar 

  26. Paull CK, Jull AJT, Toolin LJ, Linick T (1985) Stable isotope evidence for chemosynthesis in an abyssal seep community. Nature 317:709–711. doi:10.1038/317709a0

    CAS  Article  Google Scholar 

  27. Ravaux J, Zbinden M, Voss-Foucart MF et al (2003) Comparative degradation rates of chitinous exoskeletons from deep-sea environments. Mar Biol 143:405–412. doi:10.1007/s00227-003-1086-8

    CAS  Article  Google Scholar 

  28. Ridgway ID, Richardson CA (2011) Arctica islandica: the longest lived non colonial animal known to science. Rev Fish Biol Fish 21:297–310. doi:10.1007/s11160-010-9171-9

    Article  Google Scholar 

  29. Roark EB, Guilderson TP, Dunbar RB et al (2009) Extreme longevity in proteinaceous deep-sea corals. Proc Natl Acad Sci U S A 106:5204–5208. doi:10.1073/pnas.0810875106

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. Roberts HH, Aharon P (1994) Hydrocarbon-derived carbonate buildups of the northern Gulf of Mexico continental slope: a review of submersible investigations. Geo-Marine Lett 14:135–148. doi:10.1007/BF01203725

    CAS  Article  Google Scholar 

  31. Robison B, Seibel B, Drazen J (2014) Deep-sea octopus (Graneledone boreopacifica) conducts the longest-known egg-brooding period of any animal. PLoS One 9:e103437. doi:10.1371/journal.pone.0103437

    Article  PubMed  PubMed Central  Google Scholar 

  32. SAS Institute Inc, Cary NC (1989-2013) JMP®, Version 11

  33. Williams GC (1957) Pleiotropy, natural selection, and the evolution of senescence. Evolution (N Y) 11:398–411

    Google Scholar 

Download references

Acknowledgements

This research was one part of a larger study led by Dr. Jim Brooks of TDI-Brooks that was jointly funded under the National Oceanographic Partnership Program (NOPP) by the US Bureau of Ocean Energy Management (BOEM), contract #0105CT39187, and the National Oceanic and Atmospheric Administration’s Office of Ocean Exploration and Research (NOAA OER). Many thanks to Erin Becker, Jeremy Potter, Liz Goehring, and Cindy Peterson for spending countless hours measuring tubeworms and to Stephanie Lessard-Pilon for her preliminary analysis of the tubeworm tag data. Collecting these tubeworms would not have been possible without the assistance of the captains and crew of the R/V Atlantis and NOAA Ship Ronald Brown and the crew and pilots of the DSV Alvin and ROV Jason II. We would also like to thank our anonymous reviewers for their valuable comments on improving this manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alanna Durkin.

Additional information

Communicated by: Sven Thatje

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Durkin, A., Fisher, C.R. & Cordes, E.E. Extreme longevity in a deep-sea vestimentiferan tubeworm and its implications for the evolution of life history strategies. Sci Nat 104, 63 (2017). https://doi.org/10.1007/s00114-017-1479-z

Download citation

Keywords

  • Escarpia
  • Siboglinidae
  • Tubeworm
  • Cold seep
  • Longevity
  • Evolution