Andersson M (1994) Sexual selection. Princeton University Press, New Jersey
Google Scholar
Ashman KR, McNamara KB, Symonds MRE (2016) Experimental evolution reveals that population density does not affect moth signalling behaviour and antennal morphology. Evol Ecol 30:1009–1021. doi:10.1007/s10682-016-9857-0
Article
Google Scholar
Bates D, Maechler M, Bolker B, Walker S (2014) lme4: Linear mixed-effects models using Eigen and S4. R package version 11–7. URL: http://CRAN.R-project.org/package=lme4
Bernays EA, Chapman RF (1998) Phenotypic plasticity in numbers of antennal chemoreceptors in a grasshopper: effects of food. J Comp Physiol A 183:69–76. doi:10.1007/s003590050235
CAS
Article
Google Scholar
Berndt LA, Allen GR (2010) Biology and pest status of Uraba lugens Walker (Lepidoptera: Nolidae) in Australia and New Zealand. Aust J Entomol 49:268–277. doi:10.1111/j.1440-6055.2010.00760.x
Article
Google Scholar
Chapman RF (1982) Chemoreception: the significance of receptor numbers. Adv Insect Physiol 16:247–356. doi:10.1016/S0065-2806(08)60155-1
CAS
Article
Google Scholar
Darwin C (1871) The descent of man and selection in relation to sex. Murray, London
Book
Google Scholar
Faucheux MJ (1984) Morphology and distribution of antennal sensilla in the female and male clothes moth, Tineola bisselliella Humm. (Lepidoptera: Tineidae). Can J Zool 63:355–362. doi:10.1139/z85-054
Article
Google Scholar
Gibb AR et al (2008) Major sex pheromone components of the Australian gum leaf skeletoniser Uraba lugens: (10E,12Z)-Hexadecadien-1-yl acetate and (10E,12Z)-Hexadecadien-1-ol. J Chem Ecol 34:1125–1133. doi:10.1007/s10886-008-9523-2
CAS
Article
PubMed
Google Scholar
Gill KP, van Wilgenburg E, Macmillan DL, Elgar MA (2013) Density of antennal sensilla influences efficacy of communication in a social insect. Am Nat 182:834–840. doi:10.1086/673712
Article
PubMed
Google Scholar
Girard MB, Endler JA (2014) Peacock spiders. Curr Biol 24:R588–R590. doi:10.1016/j.cub.2014.05.026
CAS
Article
PubMed
Google Scholar
Gómez VRC, Carrasco JV (2008) Morphological characteristics of antennal sensilla in Talponia batesi (Lepidoptera: Tortricidae). Ann Entomol Soc Am 101:181–188. doi:10.1603/0013-8746(2008)101[181:MCOASI]2.0.CO;2
Article
Google Scholar
Greenfield MD (1981) Moth sex pheromones: an evolutionary perspective. Fla Entomol 64:4–17. doi:10.2307/3494597
Article
Google Scholar
Greenfield MD (2002) Signalers and receivers: mechanisms and evolution of arthropod communication. Oxford University Press, Oxford
Google Scholar
Gwynne DT, Bailey WJ (1999) Female-female competition in katydids: sexual selection for increased sensitivity to a male signal? Evolution 53:546–551. doi:10.2307/2640790
Article
PubMed
Google Scholar
Harari AR, Zahavi T, Thiéry D (2011) Fitness cost of pheromone production in signaling female moths. Evolution 65:1572–1582. doi:10.1111/j.1558-5646.2011.01252.x
Article
PubMed
Google Scholar
Kuznetsova A, Brockhoff PB, Christensen RHB (2014) lmerTest: Tests in linear mixed effects models. R package version 20–20. URL: http://CRAN.R-project.org/package=lmerTest
Lee J-K, Strausfeld NJ (1990) Structure, distribution and number of surface sensilla and their receptor cells on the olfactory appendage of the male moth Manduca sexta. J Neurocytol 19:519–538. doi:10.1007/BF01257241
CAS
Article
PubMed
Google Scholar
Lloyd JE (1979) Sexual selection in luminescent beetles. In: Blum MS, Blum NA (eds) Sexual selection and reproductive competition in insects. Academic, New York, pp 293–342
Google Scholar
Löfstedt C, Wahlberg N, Millar JG (2016) Evolutionary patterns of pheromone diversity in Lepidoptera. In: Allison JD, Carde RT (eds) Pheromone communication in moths: evolution, behavior and application. University of California Press, Oakland, pp 43–78
Google Scholar
Maynard Smith J, Harper D (2003) Animal signals. Oxford University Press, Oxford
Google Scholar
Mori BA, Evenden ML (2013) When mating disruption does not disrupt mating: fitness consequences of delayed mating in moths. Entomol Exp Appl 146:50–65. doi:10.1111/j.1570-7458.2012.01309.x
Article
Google Scholar
O’Hara RB, Kotze DJ (2010) Do not log-transform count data. Methods Ecol Evol 1:118–122. doi:10.1111/j.2041-210X.2010.00021.x
Article
Google Scholar
R Core Team (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL: http://www.R-project.org/
Sanes JR, Hildebrand JG (1976a) Origin and morphogenesis of sensory neurons in an insect antenna. Dev Biol 51:300–319. doi:10.1016/0012-1606(76)90145-7
CAS
Article
PubMed
Google Scholar
Sanes JR, Hildebrand JG (1976b) Structure and development of antennae in a moth, Manduca sexta. Dev Biol 51:282–299. doi:10.1016/0012-1606(76)90144-5
Article
Google Scholar
Schal C, Charlton RE, Cardé RT (1987) Temporal patterns of sex pheromone titers and release rates in Holomelina lamae (Lepidoptera: Arctiidae). J Chem Ecol 13:1115–1129. doi:10.1007/BF01020542
CAS
Article
PubMed
Google Scholar
Schneider D (1964) Insect antennae. Annu Rev Entomol 9:103–122. doi:10.1146/annurev.en.09.010164.000535
Article
Google Scholar
Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675. doi:10.1038/nmeth.2089
CAS
Article
PubMed
Google Scholar
Searcy WA, Andersson M (1986) Sexual selection and the evolution of song. Annu Rev Ecol Syst 17:507–533. doi:10.1146/annurev.es.17.110186.002451
Article
Google Scholar
Simmons LW (2015) Sexual signalling by females: do unmated females increase their signalling effort? Biol Lett 11:20150298. doi:10.1098/rsbl.2015.0298
Article
PubMed
PubMed Central
Google Scholar
Skaug H, Fournier D, Nielsen A (2006) glmmADMB: Generalized linear mixed models using AD Model Builder. URL: http://glmmadmb.r-forge.r-project.org/
Spaethe J, Brockmann A, Halbig C, Tautz J (2007) Size determines antennal sensitivity and behavioral threshold to odors in bumblebee workers. Naturwissenschaften 94:733–739. doi:10.1007/s00114-007-0251-1
CAS
Article
PubMed
Google Scholar
Steinbrecht RA (1996) Structure and function of insect olfactory sensilla. In: Bock GR, Cardew G (eds) Ciba foundation symposium 200-olfaction in mosquito-host interactions. Wiley, Chichester, pp 158–183. doi:10.1002/9780470514948.ch13
Google Scholar
Stevens M (2013) Sensory ecology, behaviour, and evolution. Oxford University Press, Oxford
Book
Google Scholar
Symonds MRE, Johnson TL, Elgar MA (2012) Pheromone production, male abundance, body size, and the evolution of elaborate antennae in moths. Ecol Evol 2:227–246. doi:10.1002/ece3.81
Article
PubMed
PubMed Central
Google Scholar
Umbers KDL, Symonds MRE, Kokko H (2015) The mothematics of female pheromone signaling: strategies for aging virgins. Am Nat 185:417–432. doi:10.1086/679614
Article
PubMed
Google Scholar
Wilkinson GS, Reillo PR (1994) Female choice response to artificial selection on an exaggerated male trait in a stalk-eyed fly. Proc R Soc Lond B Biol Sci 255:1–6. doi:10.1098/rspb.1994.0001
Article
Google Scholar
Wyatt TD (2014) Pheromones and animal behavior: chemical signals and signatures. Cambridge University Press, UK
Google Scholar
Yan X-Z, Deng C-P, Sun X-J, Hao C (2014) Effects of various degrees of antennal ablation on mating and oviposition preferences of the diamondback moth, Plutella xylostella L. J Integr Agric 13:1311–1319. doi:10.1016/s2095-3119(14)60762-0
Article
Google Scholar