Skip to main content
Log in

Unusual intraosseous fossilized soft tissues from the Middle Triassic Nothosaurus bone

  • Original Paper
  • Published:
The Science of Nature Aims and scope Submit manuscript

Abstract

Fossilized soft tissues, occasionally found together with skeletal remains, provide insights to the physiology and functional morphology of extinct organisms. Herein, we present unusual fossilized structures from the cortical region of bone identified in isolated skeletal remains of Middle Triassic nothosaurs from Upper Silesia, Poland. The ribbed or annuli-shaped structures have been found in a sample of partially demineralized coracoid and are interpreted as either giant red blood cells or as blood vessel walls. The most probable function is reinforcing the blood vessels from changes of nitrogen pressure in air-breathing diving reptiles. These structures seem to have been built of extensible muscle layers which prevent the vessel damage during rapid ascent. Such suspected function presented here is parsimonious with results of previous studies, which indicate rarity of the pathological modification of bones associated with decompression syndrome in Middle Triassic nothosaurs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bertazzo S, Maidment SCR, Kallepitis C, Fearn S, Stevens MM, Xie H (2015) Fibres and cellular structures preserved in 75-million-year-old dinosaur specimens. Nat Commun 6:7352. doi:10.1038/ncomms8352

    Article  PubMed  PubMed Central  Google Scholar 

  • Brachaniec T, Niedźwiedzki R, Surmik D, Krzykawski T, Szopa K, Gorzelak P, Salamon MA (2015) Coprolites of marine vertebrate predators from the Lower Triassic of southern Poland. Palaeogeog Palaeocl Palaeoec 435:118–126. doi:10.1016/j.palaeo.2015.06.005

    Article  Google Scholar 

  • Cadena E (2016) Microscopical and elemental FESEM and Phenom ProX-SEM-EDS analysis of osteocyte- and blood vessel-like microstructures obtained from fossil vertebrates of the Eocene Messel Pit, Germany. PeerJ 4:e1618. doi:10.7717/peerj.1618

    Article  PubMed  PubMed Central  Google Scholar 

  • Danise S, Higgs ND (2015) Bone-eating Osedax worms lived on Mesozoic marine reptile deadfalls. Biol Lett 11:20150072–20150072. doi:10.1098/rsbl.2015.0072

    Article  PubMed  PubMed Central  Google Scholar 

  • Eroschenko VP (2008) DiFioreʼs atlas of histology with functional correlations, 11th edn. Wolters Kluwer/Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Glover AG, Källström B, Smith CR, Dahlgren TG (2005) World-wide whale worms? A new species of Osedax from the shallow north Atlantic. Proc R Soc B 272:2587–2592. doi:10.1098/rspb.2005.3275

    Article  PubMed  PubMed Central  Google Scholar 

  • Goodman RM, Heah TP (2010) Temperature-induced plasticity at cellular and organismal levels in the lizard Anolis carolinensis. Integr Zool 5:208–217. doi:10.1111/j.1749-4877.2010.00206.x

    Article  PubMed  Google Scholar 

  • Greenwalt DE, Goreva YS, Siljeström SM, Rose T, Harbach RE (2013) Hemoglobin-derived porphyrins preserved in a Middle Eocene blood-engorged mosquito. PNAS. doi:10.1073/pnas.1310885110

    PubMed  PubMed Central  Google Scholar 

  • Gürich G (1884) Über einige Saurier des Oberschlesischen Muschelkalkes. Zeitschr. der Deutsch. Geologisch. Gesellsch. 36:125–144

    Google Scholar 

  • Jans MME (2008) Microbial bioerosion of bone—a review. In: Wisshak M, Tapanila L (eds) Current developments in bioerosion. Springer-Verlag, Berlin Heidelberg, pp 397–414

    Chapter  Google Scholar 

  • Ji C, Jiang D-Y, Rieppel O et al (2014) A new specimen of Nothosaurus youngi from the middle Triassic of Guizhou, China. J Vertebr Paleontol 34:465–470. doi:10.1080/02724634.2013.808204

    Article  Google Scholar 

  • Klein N (2010) Long bone histology of Sauropterygia from the Lower Muschelkalk of the Germanic Basin provides unexpected implications for phylogeny. PLoS One 5:e11613. doi:10.1371/journal.pone.0011613

    Article  PubMed  PubMed Central  Google Scholar 

  • Klein N, Albers PC (2009) A new species of the sauropsid reptile Nothosaurus from the Lower Muschelkalk of the western Germanic Basin, Winterswijk, the Netherlands. Acta Palaeontol Pol 54:589–598. doi:10.4202/app.2008.0083

    Article  Google Scholar 

  • Klein N, Sander PM, Krahl A, Scheyer TM, Houssaye A (2016) Diverse aquatic adaptations in Nothosaurus spp. (Sauropterygia)—inferences from humeral histology and microanatomy. PLoS One 11:e0158448. doi:10.1371/journal.pone.0158448

    Article  PubMed  PubMed Central  Google Scholar 

  • Kowal-Linka M (2008) Formalizacja litostratygrafii formacji gogolińskiej (trias środkowy) na Śląsku Opolskim Geologos 14: 125–161

  • Kunisch H (1888) Über eine Saurierplatte aus dem Oberschlesischen Muschelkalke. Zeitschr der Deutsch Geologisch Gesellsch 40:671–693

    Google Scholar 

  • Liu J, Hu S, Rieppel O et al (2014) A gigantic nothosaur (Reptilia: Sauropterygia) from the Middle Triassic of SW China and its implication for the Triassic biotic recovery. Sci Rep. doi:10.1038/srep07142

    Google Scholar 

  • Lundsten L, Schlining KL, Frasier K, Johnson SB, Kuhnz LA, Harvey JBJ, Clague G, Vrijenhoek RC (2010) Time-series analysis of six whale-fall communities in Monterey Canyon, California. USA Deep Sea Res I 57:1573–1584. doi:10.1016/j.dsr.2010.09.003

    Article  Google Scholar 

  • Pawlicki R (1995) Histochemical demonstration of DNA in Osteocytes from dinosaur bones. Folia Histochem Cytobiol 33:183–186

  • Pawlicki R, Nowogrodzka-Zagórska M (1998) Blood vessels and red blood cells preserved in dinosaur bones. Annals of Anatomy – Anatom Anz 180:73–77. doi:10.1016/S0940-9602(98)80140-4

    Article  CAS  Google Scholar 

  • Pawlicki R, Korbel A, Kubiak H (1966) Cells, collagen fibrils and vessels in dinosaur bone. Nature 211:655–657

    Article  CAS  PubMed  Google Scholar 

  • Resnick D (2002) Diagnosis of bone and joint disorders, 2nd edn. Saunders, Philadelphia

    Google Scholar 

  • Rieppel O (1998) The status of the sauropterygian reptile genera Ceresiosaurus, Lariosaurus, and Silvestrosaurus from the Middle Triassic of Europe. Chicago, Ill.: Field Museum of Natural History

  • Rieppel O (2000) Sauropterygia I. Placodontia, Pachypleurosauria, Nothosauroidea, Pistosauroidea. Handbuch Der Paläoherpetologie, 134

  • Rieppel O, Wild R (1996) A revision of the genus Nothosaurus (Reptilia: Sauropterygia) from the Germanic Triassic, with comments on the status of Conchiosaurus clavatus. Fieldiana 1(34):1–82

    Google Scholar 

  • Rieppel O, Mazin J-M, Tchernov E (1997) Speciation along rifting continental margins: a new Nothosaur from the Negev (Israël). C R Acad Sci Ser IIA Earth Planet Sci 325:991–997. doi:10.1016/S1251-8050(97)82380-4

    Google Scholar 

  • Rothschild BM (1987) Decompression syndrome in fossil marine turtles. Annals of the Carnegie Museum 56:253–358

    Google Scholar 

  • Rothschild BM, Martin LD (1987) Avascular necrosis: occurrence in diving cretaceous mosasaurs. Science 236:75–77. doi:10.1126/science.236.4797.75

    Article  CAS  PubMed  Google Scholar 

  • Rothschild BM, Martin LD (2006) Skeletal impact of disease. New Mexico Museum of Natural History, Albuquerque

    Google Scholar 

  • Rothschild BM, Naples V (2015) Decompression syndrome and diving behavior in Odontochelys, the first turtle. Acta Pal Pol 60:163–167. doi:10.4202/app.2012.0113

    Google Scholar 

  • Rothschild BM, Storrs GW (2003) Decompression syndrome in plesiosaurs (Sauropterygia: Reptilia). J Vertebr Paleontol 23:324–328. doi:10.1671/0272-4634(2003)023(0324:DSIPSR)2.0.CO;2

    Article  Google Scholar 

  • Rothschild BM, Xiaoting Z, Martin LD (2012) Adaptations for marine habitat and the effect of Triassic and Jurassic predator pressure on development of decompression syndrome in ichthyosaurs. Naturwissenschaften 299:443–448. doi:10.1007/s00114-012-0918-0

    Article  Google Scholar 

  • Rouse GW, Goffredi SK, Vrijenhoek RC (2004) Osedax: bone-eating marine worms with dwarf males. Science 305:668–671. doi:10.1126/science.1098650

    Article  CAS  PubMed  Google Scholar 

  • Schweitzer MH, Suo Z, Avci R, Asara JM, Allen MA, Arce FT, Horner JR (2007) Analyses of soft tissue from tyrannosaurus rex suggest the presence of protein. Science 316:277–280. doi:10.1126/science.1138709

    Article  CAS  PubMed  Google Scholar 

  • Schweitzer MH, Avci R, Collier T, Goodwin MB (2008) Microscopic, chemical and molecular methods for examining fossil preservation. Compt Rend Palevol 7:159–184

    Article  Google Scholar 

  • Schweitzer MH, Zheng W, Cleland TP, Goodwin MB, Boatman E, Theil E et al (2014) A role for iron and oxygen chemistry in preserving soft tissues, cells and molecules from deep time. Proc R Soc B 281:20132741. doi:10.1098/rspb.2013.2741

    Article  PubMed  PubMed Central  Google Scholar 

  • Starostová Z, Konarzewski M, Kozłowski J, Kratochvíl L (2013) Ontogeny of metabolic rate and red blood cell size in eyelid geckos: species follow different paths. PLoS One 8:e64715. doi:10.1371/journal.pone.0064715

    Article  PubMed  PubMed Central  Google Scholar 

  • Surmik D, Boczarowski A, Balin K, Dulski M, Szade J, Kremer B, Pawlicki R (2016) Spectroscopic studies on organic matter from Triassic reptile bones, upper Silesia, Poland. PLoS One 11:e0151143. doi:10.1371/journal.pone.0151143

    Article  PubMed  PubMed Central  Google Scholar 

  • Vijendravarma RK, Narasimha S, Kawecki TJ (2011) Plastic and evolutionary responses of cell size and number to larval malnutrition in Drisophila melanogaster. J. Evol Biol 24:897–903

    Article  CAS  Google Scholar 

  • von Meyer H (1847–1855) Die Saurier des Muschelkalkes mit Rücksicht auf die Saurier aus Buntem Sandstein und Keuper (in) Zur Fauna Der Vorwelt. Frankfurt A. Main

  • Wagner C, Steffen P, Svetina S (2013) Aggregation of red blood cells: from rouleaux to clot formation. Comptes rendus – Physique 14:459–469. doi:10.1016/j.crhy.2013.04.004

    Article  CAS  Google Scholar 

  • Wintrobe MM (1933) Variations in the size and hemoglobin content of erythrocytes in the blood of various vertebrates. Folia haematol 51:32–49

    CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Katarzyna Balin (Silesian Centre for Education and Interdisciplinary Research, Chorzów, Poland) for performing the mass spectrometry measurements and Aleksandra Pikuła (Sosnowiec, Poland) for making the three-dimensional idealized restoration of ribbed vessel. This research project is supported by National Science Center, Poland (www.ncn.gov.pl) grant no. 2011/01/N/ST10/06989.

Author contributions

DS conceived and designed the project with contribution of BMR. RP with DS prepared samples to scanning electron microscopy and mass spectra analyses. RP performed SEM images. DS with BMR wrote the paper with consultation of RP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dawid Surmik.

Additional information

Communicated by: Sven Thatje

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Surmik, D., Rothschild, B.M. & Pawlicki, R. Unusual intraosseous fossilized soft tissues from the Middle Triassic Nothosaurus bone. Sci Nat 104, 25 (2017). https://doi.org/10.1007/s00114-017-1451-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00114-017-1451-y

Keywords

Navigation