Skip to main content
Log in

Tail autotomy affects bipedalism but not sprint performance in a cursorial Mediterranean lizard

  • Original Paper
  • Published:
The Science of Nature Aims and scope Submit manuscript

Abstract

Running is essential in all terrestrial animals mainly for finding food and mates and escaping from predators. Lizards employ running in all their everyday functions, among which defense stands out. Besides flight, tail autotomy is another very common antipredatory strategy within most lizard families. The impact of tail loss to sprint performance seems to be species dependent. In some lizard species, tail shedding reduces sprint speed, in other species, increases it, and, in a few species, speed is not affected at all. Here, we aimed to clarify the effect of tail autotomy on the sprint performance of a cursorial lizard with particular adaptations for running, such as bipedalism and spike-like protruding scales (fringes) on the toepads that allow high speed on sandy substrates. We hypothesized that individuals that performed bipedalism, and have more and larger fringes, would achieve higher sprint performance. We also anticipated that tail shedding would affect sprint speed (though we were not able to define in what way because of the unpredictable effects that tail loss has on different species). According to our results, individuals that ran bipedally were faster; limb length and fringe size had limited effects on sprint performance whereas tail autotomy affected quadrupedal running only in females. Nonetheless, tail loss significantly affected bipedalism: the ability for running on hindlimbs was completely lost in all adult individuals and in 72.3% of juveniles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aerts P, Van Damme R, Daout K, Vanhooydonck B (2003) Bipedalism in lizards: whole-body modelling reveals a possible spandrel. Phil Trans R Soc London B 358:1525–1533

    Article  Google Scholar 

  • Alexander RM (2003) Principles of animal locomotion. Princeton University Press, Princeton

    Book  Google Scholar 

  • Amaya CC, Klawinski PD, Formanowicz DR (2001) The effects of leg autotomy on running speed and foraging ability in two species of wolf spider, (Lycosidae). Am Midl Nat 145:201–205

    Article  Google Scholar 

  • Arnold EN (1984) Evolutionary aspects of tail shedding in lizards and their relatives. J Nat Hist 18:127–169

    Article  Google Scholar 

  • Arnold EN (1988) Caudal autotomy as a defense. In: Gans C, Huey R (eds) Biology of the Reptilia. Alan R Liss, New York, pp. 235–273

    Google Scholar 

  • Avery RA, Mueller CF, Smith JA, Bond DJ (1987a) Speeds and movement patterns of European lacertid lizards: a comparative study. J Herpetol 21:324–329

    Article  Google Scholar 

  • Avery RA, Mueller CF, Smith JA, Bond DJ (1987b) The movement patterns of lacertid lizards: speed, gait and pauses in Lacerta vivipara. J Zool 211:47–63

    Article  Google Scholar 

  • Bateman PW, Fleming PA (2009) To cut a long tail short: a review of lizard caudal autotomy studies carried out over the last 20 years. J Zool 277:1–14

    Article  Google Scholar 

  • Baier F, Sparrow DJ, Wield HJ (2009) The amphibians and reptiles of Cyprus. Andreas S Brahm, Frankfurt

    Google Scholar 

  • Bartlett MD, Croll AB, King DR, Paret BM, Irschick DJ, Crosby AJ (2012) Looking beyond fibrillar features to scale gecko like adhesion. Adv Mater 24:1078–1083

    Article  CAS  PubMed  Google Scholar 

  • Bauer AM, Russell AP (1991) Pedal specializations in dune-dwelling geckos. J Arid Environ 20:43–62

    Google Scholar 

  • Bauer AM, Russell AP, Powell GL (1996) The evolution of locomotor morphology in the genus Rhoptropus (Squamata: Gekkonidae). Afr J Herpetol 45:8–30

    Article  Google Scholar 

  • Bauwens D, Garland T Jr, Castilla AM, Van Damme R (1995) Evolution of sprint speed in lacertid lizards: morphological, physiological and behavioral covariation. Evolution 49:848–863

    Article  Google Scholar 

  • Bergmann PJ, Irschick DJ (2010) Alternate pathways of body shape evolution translate into common patterns of locomotor evolution in two clades of lizards. Evolution 64:1569–1582

    Article  PubMed  Google Scholar 

  • Bonine KE, Garland T Jr (1999) Sprint performance of phrynosomatid lizards, measured on a high-speed treadmill, correlates with hindlimb length. J Ζool 248:255–265

    Google Scholar 

  • Bramble DM, Lieberman DE (2004) Endurance running and the evolution of Homo. Nature 432:345–352

    Article  CAS  PubMed  Google Scholar 

  • Brown RM, Taylor DH, Gist DH (1995) Effect of caudal autotomy on locomotor performance of wall lizards (Podarcis muralis). J Herpetol 29:98–105

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer-Verlag New York, Inc., New York

  • Carothers JH (1986) An experimental confirmation of morphological adaptation: toe fringes in the sand-dwelling lizard Uma scoparia. Evolution 40:871–874

    Article  Google Scholar 

  • Clemente CJ (2014) The evolution of bipedal running in lizards suggests a consequential origin may be exploited in later lineages. Evolution 68:2171–2183

    PubMed  Google Scholar 

  • Clemente CJ, Withers PC, Thompson G, Lloyd D (2008) Why go bipedal? Locomotion and morphology in Australian agamid lizards. J Exp Biol 211:2058–2065

    Article  PubMed  Google Scholar 

  • Cooper WE (1997) Factors affecting risk and cost of escape by the broad-headed skink (Eumeces laticeps): predator speed, directness of approach, and female presence. Herpetologica 53:464–474

    Google Scholar 

  • Cooper WE, Dimopoulos I, Pafilis P (2015) Sex, age, and population density affect aggressive behaviors in island lizards promoting cannibalism. Ethology 121:260–269

    Article  Google Scholar 

  • Cooper WE, Stankowich T (2010) Prey or predator? Body size of an approaching animal affects decisions to attack or escape. Behav Ecol 21:1278–1284

    Article  Google Scholar 

  • Cooper WE, Wilson DS, Smith GR (2009) Sex, reproductive status, and cost of tail autotomy via decreased running speed in lizards. Ethology 115:7–13

    Article  Google Scholar 

  • Cromie G, Chapple DG (2012) Impact of tail loss on the behavior and locomotor performance of two sympatric Lampropholis skink species. PLoS One 7:e34732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daniels C (1983) Running: an escape strategy enhanced by autotomy. Herpetologica 12:162–165

    Google Scholar 

  • Denny M (1980) Locomotion: the cost of gastropod crawling. Science 208:1288–1290

    Article  CAS  PubMed  Google Scholar 

  • Dhongra PH (2004) Comparative bipedalism—how the rest of animals kingdom walks on two legs. Philosophistry. http://www.philosophistry.com/static/bipedalism.html

  • Elliott JP, Cowan IM, Holling CS (1977) Prey capture by the African lion. Can J Zool 55:1811–1182

    Article  Google Scholar 

  • Fleming PA, Verburgt L, Scantlebury M, Medger K, Bateman PW (2009) Jettisoning ballast or fuel? Caudal autotomy and locomotory energetics of the Cape dwarf gecko Lygodactylus capensis (Gekkonidae). Physiol Biochem Zool 82:756–765

    Article  PubMed  Google Scholar 

  • Foster KL, Higham TE (2012) How forelimb and hindlimb function changes with incline and perch diameter in the green anole, Anolis carolinensis. J Exp Biol 215:2288–2300

    Article  PubMed  Google Scholar 

  • Garland T (1983) The relation between maximal running speed and body mass in terrestrial mammals. J Zool 199:157–170

    Article  Google Scholar 

  • Garland T, Losos JB (1994) Ecological morphology of locomotor performance in squamate reptiles. In: Wainwright PC, Reilly SM (eds) Ecological morphology: integrative organismal biology. University of Chicago Press, Chicago, pp. 240–302

    Google Scholar 

  • Gillis GB, Bonvini LA, Irschick DJ (2009) Losing stability: tail loss and jumping in the arboreal lizard Anolis carolinensis. J Exp Biol 212:604–609

    Article  PubMed  Google Scholar 

  • Gillis GB, Kuo CY, Irschick D (2013) The impact of tail loss on stability during jumping in green anoles (Anolis carolinensis). Physiol Biochem Zool 86:680–689

    Article  Google Scholar 

  • Hedrick TL (2008) Software techniques for two- and three-dimensional kinematic measurements of biological and biomimetic systems. Bioinsp Biomim 3:034001

    Article  PubMed  Google Scholar 

  • Higham T (2015) Bolting, bouldering, and burrowing: functional morphology and biomechanics of pedal specialisations in desert-dwelling lizards. In: Bininda-Emonds ORP, Powell GL, Jamniczky HA, Bauer AM, Theodor J (eds) All animals are interesting: a Festschrift in honour of Anthony P. Russell. BIS Verlag, Oldenburg, pp. 279–301

    Google Scholar 

  • Higham TE, Russell AP, Zani PA (2013) Integrative biology of tail autotomy in lizards. Physiol Biochem Zool 86:603–610

    Article  PubMed  Google Scholar 

  • Huey RB, Dunham AE, Overall KL, Newman RA (1990) Variation in locomotor performance in demographically known populations of the lizard Sceloporus merriami. Physiol Zool 63:845–872

    Article  Google Scholar 

  • Huey RB, Hertz PE (1984) Effects of body size and slope on acceleration of a lizard (Stellio stellio). J Exp Biol 110:113–123

    Google Scholar 

  • Husak JF, Fox SF, Lovern MB, Bussche RA (2006) Faster lizards sire more offspring: sexual selection on whole-animal performance. Evolution 60:2122–2130

    Article  CAS  PubMed  Google Scholar 

  • Irschick DJ (2000) Effects of behaviour and ontogeny on the locomotor performance of a West Indian lizard, Anolis lineatopus. Funct Ecol 14:438–444

    Article  Google Scholar 

  • Irschick DJ, Jayne BC (1998) Effects of incline on speed, acceleration, body posture and hindlimb kinematics in two species of lizard Callisaurus draconoides and Uma scoparia. J Exp Biol 201:273–287

    CAS  PubMed  Google Scholar 

  • Irschick DJ, Jayne BC (1999a) A field study of the effects of incline on the escape locomotion of a bipedal lizard, Callisaurus draconoides. Physiol Biochem Zool 72:44–56

    Article  CAS  PubMed  Google Scholar 

  • Irschick DJ, Jayne BC (1999b) Comparative three-dimensional kinematics of the hindlimb for high-speed bipedal and quadrupedal locomotion of lizards. J Exp Biol 202:1047–1065

    PubMed  Google Scholar 

  • Irschick DJ, Losos JB (1998) A comparative analysis of the ecological significance of maximal locomotor performance in Caribbean Anolis lizards. Evolution 52:219–226

    Article  Google Scholar 

  • Jagnandan K, Russell AP, Higham TE (2014) Tail autotomy and subsequent regeneration alter the mechanics of locomotion in lizards. J Exp Biol 217:3891–3897

    Article  PubMed  Google Scholar 

  • Kaliontzopoulou A, Bandeira V, Carretero MA (2012) Sexual dimorphism in locomotor performance and its relation to morphology in wall lizards (Podarcis bocagei). J Zool 289:294–302

    Article  Google Scholar 

  • Kelehear C, Webb JK (2006) Effects of tail autotomy on anti-predator behavior and locomotor performance in a nocturnal gecko. Copeia 4:803–809

    Article  Google Scholar 

  • Korff WL, McHenry MJ (2011) Environmental differences in substrate mechanics do not affect sprinting performance in sand lizards (Uma scoparia and Callisaurus draconoides). J Exp Biol 214:122–130

    Article  PubMed  Google Scholar 

  • Lailvaux SP, Irschick DJ (2007) The evolution of performance-based male fighting ability in Caribbean Anolis lizards. Am Nat 170:573–586

    Article  PubMed  Google Scholar 

  • Libby T, Moore TY, Chang-Sui E, Li D, Cohen DJ, Jusufi A, Full RJ (2012) Tail-assisted pitch control in lizards, robots, and dinosaurs. Nature 481:181–184

    Article  CAS  PubMed  Google Scholar 

  • Lleonart J, Salat J, Torres GJ (2000) Removing allometric effects of body size in morphological analysis. J Theor Biol 205:85–93

    Article  CAS  PubMed  Google Scholar 

  • Losos JB (1990) The evolution of form and function: morphology and locomotor performance in West Indian Anolis lizards. Evolution 44:1189–1203

    Article  Google Scholar 

  • Losos JB, Irschick DJ (1996) The effect of perch diameter on escape behaviour of Anolis lizards: laboratory predictions and field tests. Anim Behav 51:593–602

    Article  Google Scholar 

  • Losos JB, Sinervo B (1989) The effects of morphology and perch diameter on sprint performance of Anolis lizards. J Exp Biol 145:23–30

    Google Scholar 

  • Losos JB, Schoener TW, Warheit KI, Creer D (2001) Experimental studies of adaptive differentiation in Bahamian Anolis lizards. In: Microevolution Rate, Pattern, Process. Springer, Netherlands, pp 399–415

  • Luke C (1986) Convergent evolution of lizard toe fringes. Biol J Linn Soc 27:1–16

    Article  Google Scholar 

  • Macrini T, Irschick DJ, Losos JB (2003) Ecomorphological differences in toepad characteristics between mainland and island anoles. J Herpetol 37:52–58

    Article  Google Scholar 

  • Mammides C, Kounnamas C, Goodale E, Kadis C (2016) Do unpaved, low-traffic roads affect bird communities? Acta Oecol 71:4–21

    Article  Google Scholar 

  • Martin J, Avery R (1998) Effects of tail loss on the movement patterns of the lizard, Psammodromus algirus. Funct Ecol 12:794–802

    Article  Google Scholar 

  • Martin J, López P (1999) Nuptial coloration and mate guarding affect escape decisions of male lizards Psammodromus algirus. Ethology 105:439–447

    Article  Google Scholar 

  • McElroy EJ, Bergmann PJ (2013) Tail autotomy, tail size, and locomotor performance in lizards. Physiol Biochem Zool 86:669–679

    Article  PubMed  Google Scholar 

  • McElroy EJ, Hickey KL, Reilly SM (2008) The correlated evolution of biomechanics, gait and foraging mode in lizards. J Exp Biol 211:1029–1040

    Article  PubMed  Google Scholar 

  • McEvoy J, While GM, Sinn DL, Wapstra E (2012) The role of size and aggression in intrasexual male competition in a social lizard species, Egernia whitii. Behav Ecol Sociobiol 67:79–90

    Article  Google Scholar 

  • Melville J, Swain R (2000) Evolutionary relationships between morphology, performance and habitat openness in the lizard genus Niveoscincus (Scincidae: Lygosominae). Biol J Linnean Soc 70:667–683

    Google Scholar 

  • Miles DB (1994) Covariation between morphology and locomotor performance in sceloporine lizards. In: Vitt LJ, Pianka ER (eds) Lizard ecology: historical and experimental perspectives. Princeton University Press, Princeton, pp. 207–235

    Google Scholar 

  • Miles DB (2004) The race goes to the swift: fitness consequences of variation in sprint performance in juvenile lizards. Evol Ecol Res 6:63–75

    Google Scholar 

  • Pafilis P, Pérez-Mellado V, Valakos (2008) Post autotomy tail activity in Balearic wall lizard, Podarcis lilfordi. Naturwissenschaften 95:217–221

    Article  CAS  PubMed  Google Scholar 

  • Pafilis P, Valakos ED (2008) Loss of caudal autotomy during life in Balkan green lizard (Lacerta trilineata). J Nat Hist 42:409–419

    Article  Google Scholar 

  • Pérez-Mellado V, Corti C, Lo Cascio P (1997) Tail autotomy and extinction in Mediterranean lizards. A preliminary study of continental and insular populations. J Zool 243:533–541

    Article  Google Scholar 

  • Perry G, LeVering K, Girard I, Garland T (2004) Locomotor performance and social dominance in male Anolis cristatellus. Anim Behav 67:37–47

    Article  Google Scholar 

  • Punzo F (1982) Tail autotomy and running speed in the lizards Cophosaurus texanus and Uma notata. J Herpetol 16:329–331

    Article  Google Scholar 

  • Russell AP, Bels V (2001) Biomechanics and kinematics of limb-based locomotion in lizards: review, synthesis and prospectus. Comp Biochem Physiol 131:89–112

    Article  CAS  Google Scholar 

  • Russell AP, Johnson MK (2007) Real-world challenges to, and capabilities of, the gekkotan adhesive system: contrasting the rough and the smooth. Can J Zool 85:1228–1238

    Article  Google Scholar 

  • Salvador A (1982) A revision of the lizards of the genus Acanthodactylus (Sauria: Lacertidae). Bonn: Zoologisches Forschungsinstitut und Museum Alexander Koenig.

  • Saltin B, Rose RJ, Cluer DD (1994) The racing camel (Camelus dromedarius). Physiology, metabolic functions and adaptations. Acta Physiol Scand 617:9–11

    Google Scholar 

  • Sathe EA, Husak JF (2015) Sprint sensitivity and locomotor trade-offs in green anole (Anolis carolinensis) lizards. J Exp Biol 218:2174–2179

    Article  PubMed  Google Scholar 

  • Sharp NC (1994) Timed running speed of a cheetah (Acinonyx jubatus). J Zool 241:493–494

    Article  Google Scholar 

  • Snyder RC (1949) Quadrupedal and bipedal locomotion of lizards. Copeia 1952:64–70

    Article  Google Scholar 

  • Snyder RC (1962) Adaptations for bipedal locomotion in lizards. Am Zool 2:191–203

    Article  Google Scholar 

  • Stiller RB, McBrayer LD (2013) The ontogeny of escape behavior, locomotor performance, and the hindlimb in Sceloporus woodi. Zoology 116:175–181

    Article  PubMed  Google Scholar 

  • Tulli MJ, Abdala V, Cruz FB (2012) Effects of different substrates on the sprint performance of lizards. J Exp Biol 215:774–784

    Article  PubMed  Google Scholar 

  • Van Damme R, Bauwens D, Verheyen RF (1986) Selected body temperatures in the lizard Lacerta vivipara: variation within and between populations. J Therm Biol 11:219–222

    Article  Google Scholar 

  • Van Damme R, Vanhooydonck B (2001) Origins of interspecific variation in lizard sprint capacity. Funct Ecol 15:186–202

    Article  Google Scholar 

  • Van Damme R, Vanhooydonck B, Aerts P, De Vree F (2003) Evolution of lizard locomotion: context and constraint. In: Bels VL, Gasc JP, Casinos A (eds) Vertebrate biomechanics and evolution. BIOS Scientific Publishers, Oxford, pp. 267–282

    Google Scholar 

  • Vanhooydonck B, Aerts P, Irschick DJ, Herrel A (2006) Power generation during locomotion in Anolis lizards: an ecomorphological approach. In: Herrel A, Speck T, Rowe N (eds) Ecology and biomechanics: a mechanical approach to the ecology of animals and plants. CRC Press, Boca Raton, pp. 253–269

    Google Scholar 

  • Vanhooydonck B, James RS, Tallis J, Aerts P, Tadic Z, Tolley KA, Measey GJ, Herrel A (2014) Is the whole more than the sum of its parts? Evolutionary trade-offs between burst and sustained locomotion in lacertid lizards. Proc R Soc Lond B 281

  • Vanhooydonck B, Measy J, Edwards S, Makhubo B, Tolley KA, Herrel A (2015) The effects of substratum on locomotor performance in lacertid lizards. Biol J Linnean Soc 115:869

    Article  Google Scholar 

  • Vanhooydonck B, Van Damme R (2003) Relationships between locomotor performance, microhabitat use and antipredator behaviour in lacertid lizards. Funct Ecol 17:160–169

    Article  Google Scholar 

  • Vanhooydonck B, Van Damme R, Aerts P (2001) Speed and stamina trade-off in lacertid lizards. Evolution 55:1040–1048

    Article  CAS  PubMed  Google Scholar 

  • Van Wassenbergh S (2007) https://www.uantwerpen.be/en/staff/sam-vanwassenbergh/my-website/excel-vba-tool

  • Vitt LJ, Caldwell JP (2014) Herpetology: an introductory biology of amphibians and reptiles, 4th edn. Academic Press, San Diego

    Google Scholar 

Download references

Acknowledgements

For this study, we followed all international, national (Cyprus Law on the use of Animals in Scientific Experiments, 133(I)/2005), and institutional guidelines for the care and use of animals. We are grateful to Mrs. H. Mair for the linguistic editing of the text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pantelis Savvides.

Additional information

Communicated by: Fritz Geiser

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savvides, P., Stavrou, M., Pafilis, P. et al. Tail autotomy affects bipedalism but not sprint performance in a cursorial Mediterranean lizard. Sci Nat 104, 3 (2017). https://doi.org/10.1007/s00114-016-1425-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00114-016-1425-5

Keywords

Navigation