Advertisement

The Science of Nature

, 103:51 | Cite as

Multiple paternity in a viviparous toad with internal fertilisation

  • Laura Sandberger-LouaEmail author
  • Heike Feldhaar
  • Robert Jehle
  • Mark-Oliver Rödel
Original Paper

Abstract

Anurans are renowned for a high diversity of reproductive modes, but less than 1 % of species exhibit internal fertilisation followed by viviparity. In the live-bearing West African Nimba toad (Nimbaphrynoides occidentalis), females produce yolk-poor eggs and internally nourish their young after fertilisation. Birth of fully developed juveniles takes place after 9 months. In the present study, we used genetic markers (eight microsatellite loci) to assign the paternity of litters of 12 females comprising on average 9.7 juveniles. In 9 out of 12 families (75 %), a single sire was sufficient; in three families (25 %), more than one sire was necessary to explain the observed genotypes in each family. These findings are backed up with field observations of male resource defence (underground cavities in which mating takes place) as well as coercive mating attempts, suggesting that the observed moderate level of multiple paternity in a species without distinct sperm storage organs is governed by a balance of female mate choice and male reproductive strategies.

Keywords

Multiple paternity Internal fertilisation Operational sex ratio Male harassment Amphibia Nimbaphrynoides occidentalis 

Notes

Acknowledgments

We thank the Société de Mines de Fer, Guinée (SMFG) for financial and logistic support. For support in the field, we thank M. Hirschfeld, J. Doumbia, K. Camara, F. Gbêmou, B. Pivi and B. Doré. For helpful discussions, we thank Linus Günther and Simon Ripperger. We thank three anonymous reviewers for their constructive criticism, improving a previous draft of the manuscript.

Compliance with ethical standards

The study was funded by the Société des Mines de Fer de Guinée (SMFG), but the company had no influence on study design, data collection, data analyses and interpretation, writing of the manuscript and in the decision to submit the paper for publication; thus, the authors declare that they have no conflict of interests.

All applicable international, national and/or institutional guidelines for the care and use of animals were followed. All work complies with the guidelines for the use of live amphibians and reptiles in research compiled by the American Society of Ichthyologists and Herpetologists (ASIH), The Herpetologists’ League (HL) and the Society for the Study of Amphibians and Reptiles (SSAR), as well as to the IUCN policy statement on research involving species at risk of extinction. The Ministère de l’Enseignement Superieur et de la Recherche Scientifique (MESRS) and the Direction Nationale de la Recherche Scientifique et Technique (DNRST) granted research permits (No. 085/DNPN/2007, No. 103/DNRSIT/DN, No. 095/MENSRS/DNRST No. 091/MESRS/DNRST/2009; No. 121/MESRS/DNRST/2010; No. 177/MESRS/DNRST/2011, No. 027/MESRS/DNRST/2012, No. 061/DNRSIT/DN and No. 020/MESRS/DNRSIT/2014). The authorities from the Ministère de l’Environement et du Development durable, Conakry and the Bundesamt für Naturschutz, Bonn granted CITES export (No. 00314, N°00492) and import permits (E-3117; E-4074), respectively.

Supplementary material

114_2016_1377_MOESM1_ESM.avi (2 mb)
Online Resource 1 Video1.avi, defending cavity entrance: shows a behavioural observation of a male defending a cavity entrance against another male. (AVI 2089 kb)
114_2016_1377_MOESM2_ESM.avi (3.6 mb)
Online Resource 2 Video2.avi, antagonistic behaviours: shows behavioural observations of male antagonistic behaviours as aggressive calling and fighting. (AVI 3664 kb)
114_2016_1377_MOESM3_ESM.avi (2.2 mb)
Online Resource 3 Video3.avi: male harassment: shows a male harassing a female, as well as a male trying to dislodge an amplected male. (AVI 2243 kb)
114_2016_1377_MOESM4_ESM.avi (2.9 mb)
Online Resource 4 Video4.avi: female dislodges male: gives an example of a female dislodging an amplected male from her back. (AVI 2985 kb)

References

  1. Adams EM, Jones AG, Arnold SJ (2005) Multiple paternity in a natural population of a salamander with long-term sperm storage. Mol Ecol 14:1803–1810CrossRefPubMedGoogle Scholar
  2. Angel F, Lamotte M (1947) Note sur la biologie d’un crapaud vivipare Nectophrynoides occidentalis Ang. C R Hebd Seances Acad Sci 224:413–415PubMedGoogle Scholar
  3. Arnqvist G (1989) Multiple mating in a water strider: mutual benefits or intersexual conflict? Anim Behav 38:749–756CrossRefGoogle Scholar
  4. Arnqvist G, Kirkpatrick M (2005) The evolution of infidelity in socially monogamous passerines: the strength of direct and indirect selection on extrapair copulation behavior in females. Am Nat 165(Suppl):S26–S37CrossRefPubMedGoogle Scholar
  5. Ashby B, Gupta S (2013) Sexually transmitted infections in polygamous mating systems. Philos Trans R Soc B 368:20120048CrossRefGoogle Scholar
  6. Birkhead TR (1998) Cryptic female choice: criteria for establishing female sperm choice. Evolution 52:1212–1218CrossRefGoogle Scholar
  7. Blackburn DG (1999) Viviparity and oviparity: evolution and reproductive strategies. Encycl Reprod 4:994–1003Google Scholar
  8. Bouwman KM, Burke T, Komdeur J (2006) How female reed buntings benefit from extra-pair mating behaviour: testing hypotheses through patterns of paternity in sequential broods. Mol Ecol 15:2589–2600CrossRefPubMedGoogle Scholar
  9. Brown JL, Morales V, Summers K (2010) A key ecological trait drove the evolution of biparental care and monogamy in an amphibian. Am Nat 175:436–446CrossRefGoogle Scholar
  10. Buckley D (2012) Evolution of viviparity in salamanders (Amphibia, Caudata). Encyclopedia of Life Sciences. Wiley, Chichester, pp 1–13Google Scholar
  11. Byrne PG, Roberts JD (1999) Simultaneous mating with multiple males reduces fertilization success in the myobatrachid frog Crinia georgiana. Proc R Soc Lond Ser B Biol Sci 266:717–721CrossRefGoogle Scholar
  12. Byrne PG, Roberts JD (2012) Evolutionary causes and consequences of sequential polyandry in anuran amphibians. Biol Rev 87:209–228CrossRefPubMedGoogle Scholar
  13. Byrne PG, Whiting MJ (2011) Effects of simultaneous polyandry on offspring fitness in an African tree frog. Behav Ecol 22:385–391CrossRefGoogle Scholar
  14. Caspers BA, Krause ET, Hendrix R, Kopp M, Rupp O, Rosentreter K, Steinfartz S (2014) The more the better - polyandry and genetic similarity are positively linked to reproductive success in a natural population of terrestrial salamanders (Salmandra salamandra). Mol Ecol 23:239–250CrossRefPubMedGoogle Scholar
  15. Castanet J, Pinto S, Loth M-M, Lamotte M (2000) Âge individuel, longévité et dynamique de croissance osseuse chez un amphibien vivipare, Nectophrynoides occidentalis (Anuoure, Bufonidé). Ann Sci Nat Zool Biol Anim 24:11–17Google Scholar
  16. Chen YH, Cheng WC, Yu HT, Kam YC (2011) Genetic relationship between offspring and guardian adults of a rhacophorid frog and its care effort in response to paternal share. Behav Ecol Sociobiol 65:2329–2339CrossRefGoogle Scholar
  17. Duellman WE, Trueb L (1986) Biology of amphibians. The Johns Hopkins University Press, BaltimoreGoogle Scholar
  18. Dziminski MA, Roberts JD, Beveridge M, Simmons LW (2010) Among-population covariation between sperm competition and ejaculate expenditure in frogs. Behav Ecol 21:322–328CrossRefGoogle Scholar
  19. Frost DR (2015) Amphibian species of the world: an online reference. Version 6.0. http://research.amnh.org/herpetology/amphibia/index.html
  20. Gavaud J (1976) La gemétogenèse du mâle de Nectophrynoides occidentalis Angel (Amphibien Anoure vivipare). I. - Étude quantitative au cours du cycle annuel chez l’adulte. Ann Biol Anim Biochim Biophys 16:1–12CrossRefGoogle Scholar
  21. Grafe TU, Stewart MM, Lampert KP, Rödel M-O (2011) Putting toe clipping into perspective: a viable method for marking anurans. J Herpetol 45:28–35CrossRefGoogle Scholar
  22. Gray EM (1997) Female red-winged blackbirds accrue material benefits from copulating with extra-pair males. Anim Behav 53:625–639CrossRefGoogle Scholar
  23. Haddad CFB, Prado CPA (2005) Reproductive modes in frogs and their unexpected diversity in the Atlantic Forest of Brazil. Bioscience 55:207–217CrossRefGoogle Scholar
  24. Hase K, Shimada M (2014) Female polyandry and size-assortative mating in isolated local populations of the Japanese common toad Bufo japonicus. Biol J Linn Soc 113:236–242CrossRefGoogle Scholar
  25. Hillers A, Loua NS, Rödel M-O (2008) Assessment of the distribution and conservation status of the viviparous toad Nimbaphrynoides occidentalis on Monts Nimba. Guinea. Endanger Species Res 5:13–19CrossRefGoogle Scholar
  26. Hudson CM, Fu J (2013) Male-biased sexual size dimorphism, resource defense polygyny, and multiple paternity in the Emei moustache toad (Leptobrachium boringii). PLoS ONE 8:e67502Google Scholar
  27. Iskandar DT, Evans BJ, Mcguire JA (2014) A novel reproductive mode in frogs: a new species of fanged frog with internal fertilization and birth of tadpoles. PLoS ONE 9, e115884CrossRefPubMedPubMedCentralGoogle Scholar
  28. Jehle R, Sztatecsny M, Wolf JBW, Whitlock A, Hödl W, Burke T (2007) Genetic dissimilarity predicts paternity in the smooth newt (Lissotriton vulgaris). Biol Lett 3:526–528CrossRefPubMedPubMedCentralGoogle Scholar
  29. Johnson SL, Brockmann HJ (2013) Parental effects on early development: testing for indirect benefits of polyandry. Behav Ecol 24:1218–1228CrossRefGoogle Scholar
  30. Jones AG (2005) GERUD 2.0: a computer program for the reconstruction of parental genotypes from half-sib progeny arrays with known or unknown parents. Mol Ecol Notes 5:708–711CrossRefGoogle Scholar
  31. Jones OR, Wang J (2010) COLONY: a program for parentage and sibship inference from multilocus genotype data. Mol Ecol Resour 10:551–555CrossRefPubMedGoogle Scholar
  32. Knopp T, Merilä J (2009) Multiple paternity in the moor frog, Rana arvalis. Amphibia-Reptilia 30:515–521CrossRefGoogle Scholar
  33. Kupfer A, Wilkinson M, Gower DJ, Müller H, Jehle R (2008) Care and parentage in a skin-feeding caecilian amphibian. J Exp Zool 309A:460–467CrossRefGoogle Scholar
  34. Kusano T, Toda M, Fukuyama K (1991) Testes size and breeding systems in Japanese anurans with special reference to large testes in the treefrog, Rhacophorus arboreus (Amphibia: Rhacophoridae). Behav Ecol Sociobiol 29:27–31CrossRefGoogle Scholar
  35. Lamotte M (1959) Observations écologiques sur les populations naturelles de Nectophrynoides occidentalis (Fam. Bufonidés). Bull Biol Fr Belg 4:355–413Google Scholar
  36. Lamotte M, Xavier F (1972) Les amphibiens anoures a développement direct d’Afrique. Observations sur la biologie de Nectophrynoides tornieri (Roux). Bull la Société Zool Fr 97:413–428Google Scholar
  37. Lamotte M, Rey P, Vogeli M (1964) Recherches sur l’ovaire de Nectophrynoides occidentalis, batracien anoure vivipare. Arch Anat Microsc Morphol Exp 53:179–224PubMedGoogle Scholar
  38. Larivière S, Ferguson SH (2003) Evolution of induced ovulation in North American carnivores. J Mammal 84:937–947CrossRefGoogle Scholar
  39. Lodé T, Lesbarrères D (2004) Multiple paternity in Rana dalmatina, a monogamous territorial breeding anuran. Naturwissenschaften 91:44–47CrossRefPubMedGoogle Scholar
  40. Lodé T, Holveck MJ, Lesbarrères D (2005) Asynchronous arrival pattern, operational sex ratio and occurrence of multiple paternities in a territorial breeding anuran, Rana dalmatina. Biol J Linn Soc 86:191–200CrossRefGoogle Scholar
  41. Nichols HJ, Cant MA, Sanderson JL (2015) Adjustment of costly extra-group paternity according to inbreeding risk in a cooperative mammal. Behav Ecol 26:1486–1494PubMedPubMedCentralGoogle Scholar
  42. Orr TJ, Brennan PLR (2015) Sperm storage: distinguishing selective processes and evaluating criteria. Trends Ecol Evol 30:261–272CrossRefPubMedGoogle Scholar
  43. Parker GA, Birkhead TR (2013) Polyandry: the history of a revolution. Philos Trans R Soc B 368:20120335CrossRefGoogle Scholar
  44. Pizzari T, Wedell N (2013) The polyandry revolution. Philos Trans R Soc B 368:20120041CrossRefGoogle Scholar
  45. Plough LV, Moran A, Marko P (2014) Density drives polyandry and relatedness influences paternal success in the Pacific gooseneck barnacle, Pollicipes elegans. BMC Evol Biol 14:81CrossRefPubMedPubMedCentralGoogle Scholar
  46. Rovelli V, Randi E, Davoli F, Macale D, Bologna MA, Vignoli L, Tre R, Marconi V, Scienze D (2015) She gets many and she chooses the best: polygynandry in Salamandrina perspicillata (Amphibia: Salamandridae). Biol J Linn Soc 116:671–683CrossRefGoogle Scholar
  47. Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics Methods and Protocols: Methods in Molecular Biology. Humana Press, Totowa, pp 365–386Google Scholar
  48. Sandberger-Loua L, Doumbia J, Rödel M-O (2016) Conserving the unique to save the diverse—identifying key environmental determinants for the persistance of the viviparous Nimba toad in a West African World Heritage Site. Biol Conserv 198:15–21CrossRefGoogle Scholar
  49. Shine R (1987) The evolution of viviparity: ecological correlates of reproductive mode within a genus of Australian snakes (Pseudechis: Elapidae). Copeia 1987:551–563Google Scholar
  50. Simmons LW (2005) The evolution of polyandry: sperm competition, sperm selection and offspring viability. Annu Rev Ecol Evol Syst 36:125–146CrossRefGoogle Scholar
  51. Starr C (1984) Sperm competition, kinship, and sociality in aculeate Hymenoptera. In: Smith R (ed) Sperm competition and the evolution of animal mating systems. Academic Press, New York, pp 428–459Google Scholar
  52. Sztatecsny M, Jehle R, Burke T, Hödl W (2006) Female polyandry under male harassment: the case of the common toad (Bufo bufo). J Zool 270:517–522CrossRefGoogle Scholar
  53. Uller T, Olsson M (2008) Multiple paternity in reptiles: patterns and processes. Mol Ecol 17:2566–2580CrossRefPubMedGoogle Scholar
  54. Vieites DR, Nieto-Román S, Barluenga M, Palanca A, Vences M, Meyer A (2004) Post-mating clutch piracy in an amphibian. Nature 431:305–308CrossRefPubMedGoogle Scholar
  55. Vilter V, Lugand A (1959) Trophisme intra-utérin et croissance embryonnaire chez le Nectophrynoides occidentalis Ang., crapaud totalement vivipare du Mont Nimba (Haute-Guinée). C R Seances Soc Biol Fil 153:29–32PubMedGoogle Scholar
  56. Wake MH (1978) The reproductive biology of Eleutherodactylus jasperi (Amphibia, Anura, Leptodactylidae), with comments on the evolution of live-bearing systems. J Herpetol 12:121–133CrossRefGoogle Scholar
  57. Wake MH (1993) Evolution of oviductal gestation in amphibians. J Exp Zool 266:394–413CrossRefGoogle Scholar
  58. Wake MH (2015a) Fetal adaptations for viviparity in amphibians. J Morphol 276:941–960CrossRefPubMedGoogle Scholar
  59. Wake MH (2015b) How do homoplasies arise? Origin and maintenance of reproductive modes in amphibians. In: Dial KP, Shubin N, Brainerd EL (eds) Great transformations in vertebrate evolution. The University of Chicago Press, Chicago, pp 375–394Google Scholar
  60. Wells KD (2010) The ecology and behavior of amphibians. The University of Chicago PressGoogle Scholar
  61. Wood SN (2011) Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J R Stat Soc Ser B 73:3–36CrossRefGoogle Scholar
  62. Wourms JP, Lombardi J (1992) Reflections on the evolution of piscine viviparity. Integr Comp Biol 32:276–293Google Scholar
  63. Xavier F (1971) Recherches sur l’endocrinologie sexuelle de la femelle de Nectophrynoides occidentalis Angel (amphibien anoure vivipare). Faculté des sciences Paris, Thèse de doctorat d’état ès-Sciences NaturellesGoogle Scholar
  64. Xavier F (1974) La pseudogestation chez Nectophrynoides occidentalis Angel. Gen Comp Endocrinol 22:98–115CrossRefPubMedGoogle Scholar
  65. Xavier F (1977) An exceptional reproductive strategy in anura: Nectophrynoides occidentalis Angel (Bufonidae), an example of adaptation to terrestrial life by viviparity. In: Hecht MK, Goody PC, Hecht BM (eds) Major patterns in vertebrate evolution. Vol 14. NATO advanced Study Institude, Series A, Life Sciences, New York pp 545–552Google Scholar
  66. Xavier F (1986) La reproduction des Nectophrynoides. In: Grassé P-P, Delsol M (eds) Traité de Zoologie - anatomie, sysématique, biologie - Batraciens. Masson, Paris, pp 497–513Google Scholar
  67. Xavier F, Zuber-Vogeli M, Le Quang Trong Y (1970) Recherches sur l’activité endocrine de l’ovaire de Nectophrynoides occidentalis Angel (Amphibien Anoure vivipare) - I. Etude histochimique. Gen Comp Endocrinol 15:425–431CrossRefPubMedGoogle Scholar
  68. Zhao M, Li C, Zhang W, Wang H, Luo Z, Gu Q, Gu Z, Liao C, Wu H (2016) Male pursuit of higher reproductive success drives female polyandry in the Omei treefrog. Anim Behav 111:101–110CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Laura Sandberger-Loua
    • 1
    Email author
  • Heike Feldhaar
    • 2
  • Robert Jehle
    • 3
  • Mark-Oliver Rödel
    • 1
    • 4
  1. 1.Museum für Naturkunde Leibniz Institute for Evolution and Biodiversity ScienceBerlinGermany
  2. 2.Animal Ecology I, Bayreuth Centre for Ecology and Environmental Research (BayCEER)University of BayreuthBayreuthGermany
  3. 3.School of Environment and Life SciencesUniversity of SalfordSalfordUK
  4. 4.Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB)BerlinGermany

Personalised recommendations