Skip to main content

Social isolation and brain development in the ant Camponotus floridanus

Abstract

Social interactions play a key role in the healthy development of social animals and are most pronounced in species with complex social networks. When developing offspring do not receive proper social interaction, they show developmental impairments. This effect is well documented in mammalian species but controversial in social insects. It has been hypothesized that the enlargement of the mushroom bodies, responsible for learning and memory, observed in social insects is needed for maintaining the large social networks and/or task allocation. This study examines the impact of social isolation on the development of mushroom bodies of the ant Camponotus floridanus. Ants raised in isolation were shown to exhibit impairment in the growth of the mushroom bodies as well as behavioral differences when compared to ants raised in social groups. These results indicate that social interaction is necessary for the proper development of C. floridanus mushroom bodies.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Bonasio R, Zhang G, Chaoyang Y, Mutti N, Fang X, Qin N, Donahue G, Yang P, Li Q, Zhang P, Huang Z, Bergeer S, Reinber D, Wang J, Liebig J (2010) Genomic comparison of the ants Camponotus floridanus and Harpegnathos saltator. Science 329:1068–1071

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. Boulay R, Godzinska EJ, Lenoir A (1999) Social isolation in ants: evidence of its impact on survivorship and behavior in Camponotus fellah (Hymenoptera: Formicidae). Sociobiology 33:111–124

    Google Scholar 

  3. Boulay R, Soroker V, Godzinska EJ, Hefetz A, Lenoir A (2000) Octopamine reverses the isolation-induced increase in trophallaxis in the carpenter ant Camponotus fellah. J Exp Biol 203:513–520

    CAS  PubMed  Google Scholar 

  4. Boulay R, Lenoir A (2001) Social isolation of mature workers affects nestmate recognition in the ant Camponotus fellah. Behav Process 55:67–73

    Article  Google Scholar 

  5. Carlin NF, Hölldobler B (1986) The kin recognition system of carpenter ants (Camponotus spp.). Behav Ecol Sociobiol 19:123–134

    Article  Google Scholar 

  6. Castro L, Toro M (2004) The evolution of culture: from primate social learning to human culture. PNAS 27:10235–10240

    Article  Google Scholar 

  7. Chugani HT, Behen ME, Muzik O, Juhász C, Nagy F, Chugani DC (2001) Local brain functional activity following early deprivation: a study of post institutionalized Romanian orphans. Neuroimage 14(6):1290–1301

    CAS  Article  PubMed  Google Scholar 

  8. Dornhaus A, Chittka L (1999) Insect behavior: evolutionary origins of bee dances. Nature 401:38

    CAS  Article  Google Scholar 

  9. Dunbar RI (1992) Neocortex size as a constraint on group size in primates. J Human Evol 22:469–493

    Article  Google Scholar 

  10. Ehmer B, Kern Reeve H, Hoy R (2001) Comparison of brain volumes between single and multiple foundresses in the paper wasp Polistes dominulus. Brain Behav Evol 57:161–168

  11. Fahrbach SE (2006) Structure of the mushroom bodies of the insect brain. Annu Rev Entomol 51:209–232

    CAS  Article  PubMed  Google Scholar 

  12. Fiala JC (2005) Reconstruct: a free editor for serial section microscopy. J Microsc 218:52–61

  13. Fischman B, Woodard SH, Robinson G (2011) Molecular evolutionary analyses of insect societies. PNAS 108:10847–10854

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Franks NR, Richardson R (2006) Teaching in tandem-running ants. Nature 439:153

    CAS  Article  PubMed  Google Scholar 

  15. Fromkin V, Krashen S, Curtiss S, Rigler D, Rigler M (1974) The development of language in Genie: a case of language acquisition beyond the “critical period”. Brain Lang 1:81–107

    Article  Google Scholar 

  16. Goss S, Aron S, Deneubourg JL, Pasteels JM (1989) Self-organized shortcuts in the Argentine ant. Naturwissenschaften 76:579–581

    Article  Google Scholar 

  17. Gronenberg W, Heeren S, Hölldobler B (1996) Age-dependent and task-related morphological changes in the brain and the mushroom bodies of the ant Camponotus floridanus. J Exp Biol 199:2011–2019

    PubMed  Google Scholar 

  18. Gronenberg W, López-Riquelme GO (2004) Multisensory convergence in the mushroom bodies of ants and bees. Acta Biol Hung 55:31–37

    CAS  Article  PubMed  Google Scholar 

  19. Gronenberg W, Ash LE, Tibbetts EA (2008) Correlation between facial pattern recognition and brain composition in paper wasps. Brain Behav Evol 71:1–14

    Article  PubMed  Google Scholar 

  20. Harlow H, Suomi S (1971) Social recovery by isolation-reared monkeys. PNAS 68:1534–1538

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Hölldobler B, Wilson EO (1990) The ants. Harvard University Press, Cambridge

    Book  Google Scholar 

  22. Jolly A (1966) Lemur social behaviour and primate intelligence. Science 153:501–506

    CAS  Article  PubMed  Google Scholar 

  23. Kühn‐Bühlmann S, Wehner R (2006) Age‐dependent and task‐related volume changes in the mushroom bodies of visually guided desert ants Cataglyphis bicolor. J Neurobio 66:511–521

    Article  Google Scholar 

  24. Leadbeater E, Chittka L (2007) Social learning in insects—from miniature brains to consensus building. Curr Biol 17:R703–R713

    CAS  Article  PubMed  Google Scholar 

  25. Lihoreau M, Latty T, Chittka L (2012) An exploration of the social brain hypothesis in insects. Front Physiol 3:1–7

    Article  Google Scholar 

  26. Moglich M, Hölldobler B (1974) Social carrying behavior and division of labor during nest moving in ants. Psyche 81:219–236

    Article  Google Scholar 

  27. Muscedere ML, Gronenberg W, Moreau CS, Traniello JFA (2014) Investment in higher order central processing regions is not constrained by brain size in social insects. Proc R Soc B 281:2014.0217

    Article  Google Scholar 

  28. O’Donnell S, Donlan NA, Jones TA (2004) Mushroom body structural change is associated with division of labor in eusocial wasp workers (Polybia aequatorialis, Hymenoptera: Vespidae). Neurosci Lett 356:159–162

    Article  PubMed  Google Scholar 

  29. O’Donnell S, Bulova SJ, DeLeon S, Khodak P, Miller S, Sulger E (2015) Distributed cognition and social brains: reductions in mushroom body investment accompanied the origins of sociality in wasps (Hymenoptera: Vespidae). Proc R Soc B 282:20150791

    Article  PubMed  Google Scholar 

  30. Riveros AJ, Seid MA, Wcislo WT (2012) Evolution of brain size in class-based societies of fungus-growing ants (Attini). Anim Behav 83:1043–1049

    Article  Google Scholar 

  31. Sallet J, Mars RB, Noonan MP, Anderson JL, O’Reilly JX, Jbabdi CPL, Jenkinson M, Miller KL, Rushworth MFS (2011) Social network size affects neural circuits in macaques. Science 334:697–700

    CAS  Article  PubMed  Google Scholar 

  32. Scott JP (1962) Critical periods in behavioral development critical periods determine the direction of social, intellectual, and emotional development. Science 138:949–958

    CAS  Article  PubMed  Google Scholar 

  33. Schulz DJ, Robinson GE (1999) Biogenic amines and division of labor in honey bee colonies: behaviorally related changes in the antennal lobes and age-related changes in the mushroom bodies. J Comp Physiol A 184:481–488

    CAS  Article  PubMed  Google Scholar 

  34. Seid MA, Traniello JFA (2006) Age-related repertoire expansion and division of labor in Pheidole dentata (Hymenoptera: Formicidae): a new perspective on temporal polyethism and behavioral plasticity in ants. Behav Ecol Sociobiol 60:631–644

  35. Seid MA, Wehner R (2008) Ultrastructure and synaptic differences of the boutons of the projection neurons between the lip and collar regions of the mushroom bodies in the ant, Cataglyphis albicans. J Comp Neurol 507(1):1102–1108

    Article  PubMed  Google Scholar 

  36. Seid MA, Wehner R (2009) Delayed axonal pruning in the ant brain: a study of developmental trajectories. Dev Neurobiol 69:350–364

    Article  PubMed  Google Scholar 

  37. Seid MA, Harris KM, Traniello JF (2005) Age‐related changes in the number and structure of synapses in the lip region of the mushroom bodies in the ant Pheidole dentata. J Comp Neurol 488:269–277

    Article  PubMed  Google Scholar 

  38. Seid MA, Goode K, Li C, Traniello JFA (2008) Age- and subcaste-related patterns of serotonergic immunoreactivity in the optic lobes of the ant Pheidole dentata. Devel Neurobiol 68:1325–1333

  39. Smith AR, Seid MA, Jimenez LC, Wcislo WT (2010) Socially induced brain development in a facultatively eusocial sweat bee Megalopta genalis (Halictidae). Proc Biol Sci 277:2157–2163

    Article  PubMed  PubMed Central  Google Scholar 

  40. Stieb SM, Muenz TS, Wehner R, Rössler W (2010) Visual experience and age affect synaptic organization in the mushroom bodies of the desert ant Cataglyphis fortis. Dev Neurobiol 70:408–423

  41. Tibbets EA (2002) Visual signals of individual identity in the wasp Polistes fuscatus. Proc Biol Sci 269:1423–1428

    Article  Google Scholar 

  42. Wada-Katsumata A, Yamaoka R, Aonuma H (2011) Social interactions influence dopamine and octopamine homeostasis in the brain of the ant Formica japonica. J Exp Biol 214:1707–1713

    CAS  Article  PubMed  Google Scholar 

  43. Wilson EO (1971) The insect societies. Oxford University Press, London

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Marc A. Seid.

Additional information

Communicated by: Alain Dejean

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Seid, M.A., Junge, E. Social isolation and brain development in the ant Camponotus floridanus . Sci Nat 103, 42 (2016). https://doi.org/10.1007/s00114-016-1364-1

Download citation

Keywords

  • Ant
  • Camponotus floridanus
  • Social animals