Skip to main content

The negative effect of starvation and the positive effect of mild thermal stress on thermal tolerance of the red flour beetle, Tribolium castaneum

Abstract

The thermal tolerance of a terrestrial insect species can vary as a result of differences in population origin, developmental stage, age, and sex, as well as via phenotypic plasticity induced in response to changes in the abiotic environment. Here, we studied the effects of both starvation and mild cold and heat shocks on the thermal tolerance of the red flour beetle, Tribolium castaneum. Starvation led to impaired cold tolerance, measured as chill coma recovery time, and this effect, which was stronger in males than females, persisted for longer than 2 days but less than 7 days. Heat tolerance, measured as heat knockdown time, was not affected by starvation. Our results highlight the difficulty faced by insects when encountering multiple stressors simultaneously and indicate physiological trade-offs. Both mild cold and heat shocks led to improved heat tolerance in both sexes. It could be that both mild shocks lead to the expression of heat shock proteins, enhancing heat tolerance in the short run. Cold tolerance was not affected by previous mild cold shock, suggesting that such a cold shock, as a single event, causes little stress and hence elicits only weak physiological reaction. However, previous mild heat stress led to improved cold tolerance but only in males. Our results point to both hardening and cross-tolerance between cold and heat shocks.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Andersen JL, Findsen A, Overgaard J (2013) Feeding impairs chill coma recovery in the migratory locust (Locusta migratoria). J Insect Physiol 59:1041–1048

    Article  CAS  PubMed  Google Scholar 

  • Andersen JL, Manenti T, Sørensen JG, MacMillan HA, Loeschcke V, Overgaard J (2015) How to assess Drosophila cold tolerance: chill coma temperature and lower lethal temperature are the best predictors of cold distribution limits. Funct Ecol 29:55–65

    Article  Google Scholar 

  • Angilletta MJ (2009) Thermal adaptation: a theoretical and empirical synthesis. Oxford University Press, Oxford, UK

    Book  Google Scholar 

  • Arnett AE, Gotelli NJ (2003) Bergmann’s rule in larval ant lions: testing the starvation resistance hypothesis. Ecol Entomol 28:645–650

    Article  Google Scholar 

  • Ballard JWO, Melvin RG, Simpson SJ (2008) Starvation resistance is positively correlated with body lipid proportion in five wild caught Drosophila simulans populations. J Insect Physiol 54:1371–1376

    Article  CAS  PubMed  Google Scholar 

  • Benoit JB, Lopez-Martinez G, Teets NM, Phillips SA, Denlinger DL (2009) Responses of the bed bug, Cimex lectularius, to temperature extremes and dehydration: levels of tolerance, rapid cold hardening and expression of heat shock proteins. Med Vet Entomol 23:418–425

    Article  CAS  PubMed  Google Scholar 

  • Bowler K (2005) Acclimation, heat shock and hardening. J Thermal Biol 30:125–130

    Article  Google Scholar 

  • Bowler K, Terblanche JS (2008) Insect thermal tolerance: what is the role of ontogeny, ageing and senescence? Biol Rev 83:339–355

    Article  PubMed  Google Scholar 

  • Brown RP, Griffin S (2005) Lower selected body temperatures after food deprivation in the lizard Anolis carolinensis. J Thermal Biol 30:79–83

    Article  Google Scholar 

  • Bubliy OA, Loeschcke V (2005) Correlated responses to selection for stress resistance and longevity in a laboratory population of Drosophila melanogaster. J Evol Biol 18:789–803

  • Bubliy OA, Kristensen TN, Kellermann V, Loeschcke V (2012) Plastic responses to four environmental stresses and cross-resistance in a laboratory population of Drosophila melanogaster. Funct Ecol 26:245–253

    Article  Google Scholar 

  • Burton V, Mitchell HK, Young P, Petersen NS (1988) Heat shock protection against cold stress of Drosophila melanogaster. Mol Cell Biol 8:3550–3552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell JF, Hagstrum DW (2002) Patch exploitation by Tribolium castaneum: movement patterns, distribution, and oviposition. J Stored Prod Res 38:55–68

    Article  Google Scholar 

  • Campbell JF, Toews MD, Arthur FH, Arbogast RT (2010) Long-term monitoring of Tribolium castaneum in two flour mills: seasonal patterns and impact of fumigation. J Econ Entomol 103:991–1001

    Article  PubMed  Google Scholar 

  • Castañeda LE, Lardies MA, Bozinovic F (2005) Interpopulational variation in recovery time from chill coma along a geographic gradient: a study in the common woodlouse, Porcellio laevis. J Insect Physiol 51:1346–1351

    Article  PubMed  Google Scholar 

  • Chen CP, Lee RE, Denlinger DL (1991) Cold shock and heat shock: a comparison of the protection generated by brief pretreatment at less severe temperatures. Physiol Entomol 16:19–26

    Article  Google Scholar 

  • Colinet H, Hoffmann AA (2012) Comparing phenotypic effects and molecular correlates of developmental, gradual and rapid cold acclimation responses in Drosophila melanogaster. Funct Ecol 26:84–93

    Article  Google Scholar 

  • Daglish GJ (2006) Survival and reproduction of Tribolium castaneum (Herbst), Rhyzopertha dominica (F.) and Sitophilus oryzae (L.) following periods of starvation. J Stored Prod Res 42:328–338

    Article  Google Scholar 

  • David RJ, Gibert P, Pla E, Petavy G, Karan D, Moreteau B (1998) Cold stress tolerance in Drosophila: analysis of chill coma recovery in D. melanogaster. J Thermal Biol 23:291–299

    Article  Google Scholar 

  • Donegan K, Lighthart B (1989) Effect of several stress factors on the susceptibility of the predatory insect, Chrysoperla carnea (Neuroptera:Chrysopidae), to the fungal pathogen Beauveria bassiana. J Invertebr Pathol 54:79–84

    Article  Google Scholar 

  • Easterling DR, Meehl GA, Parmesan C, Changnon SA, Karl TR, Mearns LO (2000) Climate extremes: observations, modeling, and impacts. Science 289:2068–2074

    Article  CAS  PubMed  Google Scholar 

  • Fischer K, Dierks A, Franke K, Geister TL, Liszka M, Winter S, Pflicke C (2010) Environmental effects on temperature stress resistance in the tropical butterfly Bicyclus anynana. PLoS One 5:e15284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franzke A, Reinhold K (2011) Stressing food plants by altering water availability affects grasshopper performance. Ecosphere 2:85

    Article  Google Scholar 

  • Halle S, Nowizki A, Scharf I (2015) The consequences of parental age for development, body mass and resistance to stress in the red flour beetle. Biol J Linn Soc 115:305–314

    Article  Google Scholar 

  • Halliday WD, Blouin-Demers G (2014) Red flour beetles balance thermoregulation and food acquisition via density-dependent habitat selection. J Zool 294:198–205

    Article  Google Scholar 

  • Hoffmann AA, Harshman LG (1999) Desiccation and starvation resistance in Drosophila: patterns of variation at the species, population and intrapopulation levels. Heredity 83:637–643

    Article  PubMed  Google Scholar 

  • Hoffmann AA, Hallas R, Anderson AR, Telonis-Scott M (2005) Evidence for a robust sex-specific trade-off between cold resistance and starvation resistance in Drosophila melanogaster. J Evol Biol 18:804–810

    Article  CAS  PubMed  Google Scholar 

  • Howe RW (1956) The effect of temperature and humidity on the rate of development and mortality of Tribolium castaneum (Herbst) (Coleoptera:Tenebrionidae). Ann Appl Biol 44:356–368

    Article  Google Scholar 

  • Huey RB, Crill WD, Kingsolver JG, Weber KE (1992) A method for rapid measurement of heat or cold resistance of small insects. Funct Ecol 6:489–494

    Article  Google Scholar 

  • Jensen D, Ovaergaard J, Sørensen JG (2007) The influence of developmental stage on cold shock resistance and ability to cold-harden in Drosophila melanogaster. J Insect Physiol 53:179–186

    Article  CAS  PubMed  Google Scholar 

  • Jensen K, Mayntz D, Wang T, Simpson SJ, Overgaard J (2010) Metabolic consequences of feeding and fasting on nutritionally different diets in the wolf spider Pardosa prativaga. J Insect Physiol 56:1095–1100

    Article  CAS  PubMed  Google Scholar 

  • Kenny MC, Wilton A, Ballard JWO (2008) Seasonal trade-off between starvation resistance and cold resistance in temperate wild-caught Drosophila simulans. Aust J Entomol 47:20–23

    Article  Google Scholar 

  • Koštal V, Vambera J, Bastl J (2004) On the nature of pre-freeze mortality in insects: water balance, ion homeostasis and energy charge in the adults of Pyrrhocoris apterus. J Exp Biol 207:1059–1521

    Article  Google Scholar 

  • Koštal V, Yanagimoto M, Bastl J (2006) Chilling-injury and disturbance of ion homeostasis in the coxal muscle of the tropical cockroach (Nauphoeta cinerea). Comp Biochem Physiol B 143:171–179

    Article  PubMed  Google Scholar 

  • Kubi C, Van den Abbeele J, De Deken R, Marcotty T, Dorny P, Van den Bossche P (2006) The effect of starvation on the susceptibility of teneral and non-teneral tsetse flies to trypanosome infection. Med Vet Entomol 20:388–392

    Article  CAS  PubMed  Google Scholar 

  • Lee RE, Damodaran K, Yi SX, Lorigan GA (2006) Rapid cold-hardening increases membrane fluidity and cold tolerance of insect cells. Cryobiology 52:459–463

    Article  CAS  PubMed  Google Scholar 

  • MacMillan HA, Sinclair BJ (2011a) Mechanisms underlying insect chill-coma. J Insect Physiol 57:12–20

  • MacMillan HA, Sinclair BJ (2011b) The role of the gut in insect chilling injury: cold-induced disruption of osmoregulation in the fall field cricket, Gryllus pennsylvanicus. J Exp Biol 214:726–734

  • MacMillan HA, Walsh JP, Sinclair BJ (2009) The effects of selection for cold tolerance on cross-tolerance to other environmental stressors in Drosophila melanogaster. Insect Sci 16:263–276

    Article  Google Scholar 

  • MacMillan HA, Williams CM, Staples JF, Sinclair BJ (2012) Reestablishment of ion homeostasis during chill-coma recovery in the cricket Gryllus pennsylvanicus. Proc Natl Acad Sci U S A 109:20750–20755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacMillan HA, Ferguson LV, Nicolai A, Donini A, Staples JF, Sinclair BJ (2015) Parallel ionoregulatory adjustments underlie phenotypic plasticity and evolution of Drosophila cold tolerance. J Exp Biol 218:423–432

    Article  PubMed  Google Scholar 

  • Marshall KE, Sinclair BJ (2010) Repeated stress exposure results in a survival–reproduction trade-off in Drosophila melanogaster. Proc R Soc London B 277:963–969

    Article  Google Scholar 

  • Matsura T, Murao T (1994) Comparative study on the behavioral response to starvation in three species of antlion larvae (Neuroptera:Myrmeleontidae). J Insect Behav 7:873–884

    Article  Google Scholar 

  • McCue MD (2010) Starvation physiology: reviewing the different strategies animals use to survive a common challenge. Comp Biochem Physiol A 156:1–18

    Article  Google Scholar 

  • McCue MD (2012) An introduction to fasting, starvation, and food limitation. In: McCue MD (ed) Comparative physiology of fasting, starvation, and food limitation. Springer, Heidelberg, pp 1–6

    Chapter  Google Scholar 

  • Modlmeier AP, Pamminger T, Foitzik S, Scharf I (2012) Cold resistance depends on acclimation and behavioral caste in a temperate ant. Naturwissenschaften 99:811–819

    Article  CAS  PubMed  Google Scholar 

  • Neven LG (2000) Physiological responses of insects to heat. Postharvest Biol Technol 21:103–111

    Article  CAS  Google Scholar 

  • Nyamukondiwa C, Terblanche J (2009) Thermal tolerance in adult Mediterranean and Natal fruit flies (Ceratitis capitata and Ceratitis rosa): effects of age, gender and feeding status. J Thermal Biol 34:406–414

    Article  Google Scholar 

  • Overgaard J, Søresnsen JG, Petersen SO, Loeschcke V, Holmstrup M (2005) Changes in membrane lipid composition following rapid cold hardening in Drosophila melanogaster. J Insect Physiol 51:1173–1182

    Article  CAS  PubMed  Google Scholar 

  • Park T (1934) Observations on the general biology of the flour beetle, Tribolium confusum. Q Rev Biol 9:36–54

    Article  Google Scholar 

  • Powell W (1976) Supercooling temperature distribution curves as possible indicators of aphid food quality. J Insect Physiol 22:595–599

    Article  Google Scholar 

  • Renault D, Salin C, Vannier G, Vernon P (2002) Survival at low temperatures in insects: what is the ecological significance of the supercooling point? CryoLetters 23:217–228

    CAS  PubMed  Google Scholar 

  • Rotkopf R, Barkae ED, Bar-Hanin E, Alcalay Y, Ovadia O (2012) Multi-axis niche examination of ecological specialization: responses to heat, desiccation and starvation stress in two species of pit-building antlions. PLoS One 7:e50884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salin C, Renault D, Vannier G, Vernon P (2000) A sexually dimorphic response in supercooling temperature, enhanced by starvation, in the lesser mealworm Alphitobius diaperinus (Coleoptera:Tenebrionidae). J Thermal Biol 25:411–418

    Article  Google Scholar 

  • Scharf I, Filin I, Ben-Yehoshua D, Ovadia O (2009) Phenotypic plasticity and variation in morphological and life-history traits of antlion adults across a climatic gradient. Zoology 112:139–150

    Article  PubMed  Google Scholar 

  • Scharf I, Sbilordo SH, Martin OY (2014) Cold tolerance in flour beetle species differing in body size and selection temperature. Physiol Entomol 39:80–87

    Article  Google Scholar 

  • Scharf I, Galkin N, Halle S (2015) Disentangling the consequences of growth temperature and adult acclimation temperature on starvation and thermal tolerance in the red flour beetle. Evol Biol 42:54–62

    Article  Google Scholar 

  • Sejerkilde M, Sørensen JG, Loeschcke V (2003) Effects of cold- and heat hardening on thermal resistance in Drosophila melanogaster. J Insect Physiol 49:719–726

    Article  CAS  PubMed  Google Scholar 

  • Sinclair BJ, Bretman A, Tregenza T, Tomkins JL, Hosken DJ (2011) Metabolic rate does not decrease with starvation in Gryllus bimaculatus when changing fuel use is taken into account. Physiol Entomol 36:84–89

    Article  Google Scholar 

  • Sinclair BJ, Williams CM, Terblanche JS (2012) Variation in thermal performance among insect populations. Physiol Biochem Zool 85:594–606

    Article  PubMed  Google Scholar 

  • Singer MC, Parmesan C (2010) Phenological asynchrony between herbivorous insects and their hosts: signal of climate change or pre-existing adaptive strategy? Philos Trans R Soc London B 365:3161–3176

    Article  Google Scholar 

  • Šlachta M, Vambera J, Zahradníčková H, Koštal V (2002) Entering diapause is a prerequisite for successful cold-acclimation in adult Graphosoma lineatum (Heteroptera:Pentatomidae). J Insect Physiol 48:1031–1039

    Article  PubMed  Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry (3rd ed). Freeman, NY

  • Sokoloff A (1974) The biology of Tribolium, vol 2. Oxford University Press, Oxford, UK

    Google Scholar 

  • Sørensen JG, Dahlgaard J, Loeschcke V (2001) Genetic variation in thermal tolerance among natural populations of Drosophila buzzatii: down regulation of Hsp70 expression and variation in heat stress resistance traits. Funct Ecol 15:289–296

    Article  Google Scholar 

  • Sørensen JG, Kristensen TN, Loeschcke V (2003) The evolutionary and ecological role of heat shock proteins. Ecol Lett 6:1025–1037

    Article  Google Scholar 

  • Štětina T, Koštal V, Korbelová J (2015) The role of inducible Hsp70, and other heat shock proteins, in adaptive complex of cold tolerance of the fruit fly (Drosophila melanogaster). PLoS One 10:e0128976

    Article  PubMed  PubMed Central  Google Scholar 

  • Stockhoff BA (1991) Starvation resistance of gypsy moth, Lymantria dispar (L.) (Lepidoptera:Lymantriidae): tradeoffs among growth, body size, and survival. Oecologia 88:422–429

    Article  Google Scholar 

  • Tanaka K, Ito Y (1982) Decrease in respiratory rate in a wolf spider, Pardosa astrigera (L. Koch), under starvation. Res Popul Ecol 24:360–374

    Article  Google Scholar 

  • Terblanche JS, Marais E, Chown SL (2007) Stage-related variation in rapid cold hardening as a test of the environmental predictability hypothesis. J Insect Physiol 53:455–462

    Article  CAS  PubMed  Google Scholar 

  • Van Dijk PLM, Staaks G, Hardewig I (2002) The effect of fasting and refeeding on temperature preference, activity and growth of roach, Rutilus rutilus. Oecologia 130:496–504

    Article  Google Scholar 

  • Wang T, Hung CCY, Randall DJ (2006) The comparative physiology of food deprivation: from feast to famine. Annu Rev Physiol 68:223–251

    Article  PubMed  Google Scholar 

  • Woiwode JG, Adelman IR (1992) Effects of starvation, oscillating temperatures, and photoperiod on the critical thermal maximum of hybrid striped × white bass. J Thermal Biol 17:271–275

    Article  Google Scholar 

  • Worland MR, Hawes TC, Bale JS (2007) Temporal resolution of cold acclimation and de-acclimation in the Antarctic collembolan, Cryptopygus antarcticus. Physiol Entomol 32:233–239

    Article  Google Scholar 

  • Young AM (1970) Predation and abundance in populations of flour beetles. Ecology 51:602–619

    Article  Google Scholar 

  • Zeilstra I, Fischer K (2005) Cold tolerance in relation to developmental and adult temperature in a butterfly. Physiol Entomol 30:92–95

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007-2013) under REA grant agreement no. 333442 for funding this study and to Aziz Subach and four anonymous reviewers for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inon Scharf.

Additional information

Communicated by: Sven Thatje

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scharf, I., Wexler, Y., MacMillan, H.A. et al. The negative effect of starvation and the positive effect of mild thermal stress on thermal tolerance of the red flour beetle, Tribolium castaneum . Sci Nat 103, 20 (2016). https://doi.org/10.1007/s00114-016-1344-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00114-016-1344-5

Keywords