Advertisement

The Science of Nature

, 103:7 | Cite as

Light triggers habitat choice of eyeless subterranean but not of eyed surface amphipods

  • Žiga Fišer
  • Luka Novak
  • Roman Luštrik
  • Cene Fišer
Original Paper

Abstract

Boundaries of species distributions are the result of colonization-extinction processes. Survival on the boundary depends on how well individuals discriminate optimal from suboptimal habitat patches. Such behaviour is called habitat choice and was only rarely applied to macroecology, although it links species ecological niche and species distribution. Surface and subterranean aquatic species are spatially strongly segregated, even in the absence of physical barriers. We explored whether a behavioural response to light functions as a habitat choice mechanism that could explain species turnover between surface and subterranean aquatic ecosystems. In a controlled laboratory experiment, we studied the behavioural response to light of ten pairs of surface and subterranean amphipods that permanently co-occur in springs. Surface species showed a weak photophobic, photoneutral, and in one case, photophilic response, whereas all subterranean species showed a strong photophobic response. Eyeless subterranean but not eyed surface amphipods appear to orient themselves with light cues. On a local scale, this difference possibly diminishes harmful interactions between the co-occurring amphipods, whereas on a regional scale, photophobia could explain limited dispersal and a high degree of endemism observed among subterranean species.

Keywords

Photophobia Habitat choice Distribution Gammarus Niphargus 

Notes

Acknowledgments

We are grateful to Peter Trontelj, Simona Prevorčnik and Florian Malard for thoughtful discussions on experimental design and comments on early drafts of the manuscript. We also thank three anonymous reviewers for their constructive and helpful commentaries. We thank Teo Delić, Maja Zagmajster and Simona Prevorčnik for their help with fieldwork; Alenka Gaberščik and Dragan Abram for providing the Licor Li-1000 Data Logger and LI-190 Quantum Sensor; Andrej Mohar for providing the Minolta Illuminance Meter T-10; Miloš Vittori for providing the juvenile zebrafish. The project was partially supported by the Slovenian Research Agency—program P1-0184 (to ŽF and CF) and a PhD grant to ŽF.

Supplementary material

114_2015_1329_MOESM1_ESM.pdf (527 kb)
ESM 1 (PDF 527 kb)

References

  1. Åbjörnsson K, Hansson LA, Brönmark C (2004) Responses of prey from habitats with different predator regimes: local adaptation and heritability. Ecology 85:1859–1866CrossRefGoogle Scholar
  2. Aspiras AC, Rohner N, Martineau B et al (2015) Melanocortin 4 receptor mutations contribute to the adaptation of cavefish to nutrient-poor conditions. Proc Natl Acad Sci 112:9668–9673PubMedCentralCrossRefPubMedGoogle Scholar
  3. Bartoń K (2014) MuMIn: multi-model inference. R package version 1(10):5, http://cran.r-project.org/package=MuMIn Google Scholar
  4. Bates D, Maechler M, Bolker B, Walker S (2014) lme4: linear mixed-effects models using Eigen and S4. R package version 1:1–7, http://cran.r-project.org/package=lme4 Google Scholar
  5. Binckley C, Resetarits WJ (2005) Habitat selection determines abundance, richness and species composition of beetles in aquatic communities. Biol Lett 1:370–374PubMedCentralCrossRefPubMedGoogle Scholar
  6. Borowsky B (2011) Responses to light in two eyeless cave dwelling amphipods (Niphargus ictus and Niphargus frasassianus). J Crustac Biol 31:613–616CrossRefGoogle Scholar
  7. Buckley LB, Jetz W (2008) Linking global turnover of species and environments. Proc Natl Acad Sci U S A 105:17836–17841PubMedCentralCrossRefPubMedGoogle Scholar
  8. Carroll TM, Thorp JH (2014) Ecotonal shifts in diversity and functional traits in zoobenthic communities of karst springs. Hydrobiologia 738:1–20CrossRefGoogle Scholar
  9. Cézilly F, Favrat A, Perrot-Minnot M-J (2013) Multidimensionality in parasite-induced phenotypic alterations: ultimate versus proximate aspects. J Exp Biol 216:27–35CrossRefPubMedGoogle Scholar
  10. Connell JH (1961) The influence of interspecific competition and other factors on the distribution of the barnacle Chtalamus stellatus. Ecology 42:710–723CrossRefGoogle Scholar
  11. Culver DC, Pipan T (2009) The Biology of Caves and Other Subterranean Habitats Oxford University Press, New York, USA.Google Scholar
  12. Culver DC, Pipan T (2014) Shallow Subterranean Habitats. Ecology, Evolution and Conservation. Oxford University Press, New York, USAGoogle Scholar
  13. Dianne L, Perrot-Minnot M-J, Bauer A et al (2011) Protection first then facilitation: a manipulative parasite modulates the vulnerability to predation of its intermediate host according to its own developmental stage. Evolution 65:2692–2698CrossRefPubMedGoogle Scholar
  14. Edelaar P, Siepielski AM, Clobert J (2008) Matching habitat choice causes directed gene flow: a neglected dimension in evolution and ecology. Evolution 62:2462–2472CrossRefPubMedGoogle Scholar
  15. Elliott JM (2005) Day-night changes in the spatial distribution and habitat preferences of freshwater shrimps, Gammarus pulex, in a stony stream. Freshw Biol 50:552–566CrossRefGoogle Scholar
  16. Fišer C, Keber R, Kereži V et al (2007) Coexistence of species of two amphipod genera: Niphargus timavi (Niphargidae) and Gammarus fossarum (Gammaridae). J Nat Hist 41:2641–2651CrossRefGoogle Scholar
  17. Fišer C, Pipan T, Culver DC (2014) The vertical extent of groundwater metazoans: an ecological and evolutionary perspective. Bioscience 64:971–979CrossRefGoogle Scholar
  18. Friedrich M (2013) Biological clocks and visual systems in cave-adapted animals at the dawn of speleogenomics. Integr Comp Biol 53:50–67CrossRefPubMedGoogle Scholar
  19. Friedrich M, Chen R, Daines B et al (2011) Phototransduction and clock gene expression in the troglobiont beetle Ptomaphagus hirtus of Mammoth cave. J Exp Biol 214:3532–41CrossRefPubMedGoogle Scholar
  20. Ginet R (1960) Écologie, éthologie et biologie de Niphargus (Amphipodes Gammaridés hypogés). Ann Spéléologie 15:127–376Google Scholar
  21. Hamilton IM (2010) Habitat selection. In: Breed MD, Moore J (eds) Encyclopedia of Animal Behavior. Academic Press, pp 38–43Google Scholar
  22. Holt RD, Barfield M (2008) Habitat selection and niche conservatism. Isr J Ecol Evol 54:295–309CrossRefGoogle Scholar
  23. Horstkotte J, Riesch R, Plath M, Jäger P (2010) Predation by three species of spiders on a cave fish in a Mexican sulphur cave. Bull Br Arachnol Soc 15:55–58CrossRefGoogle Scholar
  24. Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biometrical J 50:346–363CrossRefGoogle Scholar
  25. Jackson CH (2011) Multi-state models for panel data: the msm package for R. J Stat Softw 38:1–28CrossRefGoogle Scholar
  26. Johnson PCD (2014) Extension of Nakagawa & Schielzeth’s R2 GLMM to random slopes models. Methods Ecol Evol 5:944–946PubMedCentralCrossRefPubMedGoogle Scholar
  27. Jones J (2001) Habitat selection studies in avian ecology: a critical review. Auk 118:557–562CrossRefGoogle Scholar
  28. Klaus S, Plath M (2011) Predation on a cave fish by the freshwater crab avotrichodactylus bidens (Bott, 1969) (Brachyura, Trichodactylidae) in a Mexican Sulfur Cave. Crustaceana 84:411–418CrossRefGoogle Scholar
  29. Konec M, Prevorčnik S, Sarbu SM et al (2015) Parallels between two geographically and ecologically disparate cave invasions by the same species, Asellus aquaticus (Isopoda, Crustacea). J Evol Biol 28:864–875CrossRefPubMedGoogle Scholar
  30. Kubisch A, Holt RD, Poethke HJ, Fronhofer EA (2014) Where am I and why? Synthesizing range biology and the eco-evolutionary dynamics of dispersal. Oikos 123:5–22CrossRefGoogle Scholar
  31. Kureck A (1964) Light sensitivity in the amphipode, Niphargus aquliex schellenbergi Karaman. Experientia 20:523–524CrossRefPubMedGoogle Scholar
  32. Langecker TG (1992) Light sensitivity of cave vertebrates—behavioral and morphological aspect. In: Camacho AI (ed) The natural history of biospeleology. Museo Nacional de Ciencias Naturales, Madrid, Spain, pp 296–326Google Scholar
  33. Langecker TG (2000) The effects of continuous darkness on cave ecology and cavernicolous evolution. In: Wilkens H, Culver DC, Humphreys WF (eds) Ecosystems of the World 30: Subterranean Ecosystems. Elsevier, Amsterdam, The Netherlands, pp 135–157Google Scholar
  34. Ludwig W (1942) Zur evolutorischen Erklärung der Höhlentiermerkmale durch Allelelimination. Biol Zent Bl 62:447–482Google Scholar
  35. Luštrik R, Turjak M, Kralj-Fišer S, Fišer C (2011) Coexistence of surface and cave amphipods in an ecotone environment. Contrib to Zool 80:133–141Google Scholar
  36. Malard F, Boutin C, Camacho AI et al (2009) Diversity patterns of stygobiotic crustaceans across multiple spatial scales in Europe. Freshw Biol 54:756–776CrossRefGoogle Scholar
  37. Mamos T, Wattier R, Majda A et al (2014) Morphological vs. molecular delineation of taxa across montane regions in Europe: the case study of Gammarus balcanicus Schäferna, (Crustacea: Amphipoda). J Zool Syst Evol Res 52:237–248CrossRefGoogle Scholar
  38. Marshall J, Kent J, Cronin T (1999) Visual adaptations in crustaceans: spectral sensitivity in diverse habitats. In: Archer SN, Djamgoz MBA, Loew ER et al (eds) Adaptive Mechanisms in the Ecology of Vision. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 285–327CrossRefGoogle Scholar
  39. Meleg IN, Zakšek V, Fišer C et al (2013) Can environment predict cryptic diversity? The case of Niphargus inhabiting western Carpathian groundwater. PLoS One 8, e76760PubMedCentralCrossRefPubMedGoogle Scholar
  40. Meyer-Rochow VB (2001) The crustacean eye: dark/light adaptation, polarization sensitivity, flicker fusion frequency, and photoreceptor damage. Zool Sci 18:1175–1197CrossRefPubMedGoogle Scholar
  41. Moran D, Softley R, Warrant EJ (2014) Eyeless Mexican cavefish save energy by eliminating the circadian rhythm in metabolism. PLoS One 9:e107877PubMedCentralCrossRefPubMedGoogle Scholar
  42. Moran D, Softley R, Warrant EJ (2015) The energetic cost of vision and the evolution of eyeless Mexican cavefish. Sci Adv 1:1–9CrossRefGoogle Scholar
  43. Morris DW (2003) Toward an ecological synthesis: a case for habitat selection. Oecologia 136:1–13CrossRefPubMedGoogle Scholar
  44. Nakagawa S, Schielzeth H (2013) A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol Evol 4:133–142CrossRefGoogle Scholar
  45. Niemiller ML, Fitzpatrick BM, Shah P et al (2012) Evidence for repeated loss of selective constraint in rhodopsin of amblyopsid cavefishes (Teleostei: Amblyopsidae). Evolution 67:732–748CrossRefPubMedGoogle Scholar
  46. Palandačić A, Matschiner M, Zupančič P, Snoj A (2012) Fish migrate underground: the example of Delminichthys adspersus (Cyprinidae). Mol Ecol 21:1658–1671CrossRefPubMedGoogle Scholar
  47. Parzefall J, Kraus C, Tobler M, Plath M (2007) Photophilic behaviour in surface- and cave-dwelling Atlantic mollies Poecilia mexicana (Poeciliidae). J Fish Biol 71:1225–1231CrossRefGoogle Scholar
  48. Passow CN, Greenway R, Arias-Rodriguez L et al (2015) Reduction of energetic demands through modification of body size and routine metabolic rates in extremophile fish. Physiol Biochem Zool 88:371–383CrossRefPubMedGoogle Scholar
  49. Pipan T, Culver DC (2012) Convergence and divergence in the subterranean realm: a reassessment. Biol J Linn Soc 107:1–14CrossRefGoogle Scholar
  50. R Core Team (2014) R: A language and environment for statistical computing. Vienna (Austria): R Foundation for Statistical ComputingGoogle Scholar
  51. Ravigné V, Olivieri I, Dieckmann U (2004) Implications of habitat choice for protected polymorphisms. Evol Ecol Res 6:125–145Google Scholar
  52. Ravigné V, Dieckmann U, Olivieri I (2009) Live where you thrive: joint evolution of habitat choice and local adaptation facilitates specialization and promotes diversity. Am Nat 174:141–169CrossRefGoogle Scholar
  53. Resetarits WJ (2005) Habitat selection behaviour links local and regional scales in aquatic systems. Ecol Lett 8:480–486CrossRefPubMedGoogle Scholar
  54. Riesch R, Plath M, Schlupp I (2011) Speciation in caves: experimental evidence that permanent darkness promotes reproductive isolation. Biol Lett 7:909–912PubMedCentralCrossRefPubMedGoogle Scholar
  55. Risser PG (1995) The status of the science examining ecotones. Bioscience 45:318–325CrossRefGoogle Scholar
  56. Rivetti C, Campos B, Barata C (2015) Low environmental levels of neuro-active pharmaceuticals alter phototactic behaviour and reproduction in Daphnia magna. Aquat Toxicol 170:289–296Google Scholar
  57. Romero A, Green SM (2005) The end of regressive evolution: examining and interpreting the evidence from cave fishes. J Fish Biol 67:3–32CrossRefGoogle Scholar
  58. Simčič T, Brancelj A (2007) The effect of light on oxygen consumption in two amphipod crustaceans—the hypogean Niphargus stygius and the epigean Gammarus fossarum. Mar Freshw Behav Physiol 40:141–150CrossRefGoogle Scholar
  59. Sket B (1985) Why all cave animals do not look alike—a discussion on adaptive value of reduction processes. Bull Natl Speleol Soc 47:78–85Google Scholar
  60. Sket B (2008) Can we agree on an ecological classification of subterranean animals? J Nat Hist 42:1549–1563CrossRefGoogle Scholar
  61. Stoks R, McPeek MA (2003) Antipredator behavior and physiology determine lestes species turnover along the pond permanence gradient. Ecology 84:3327–3338CrossRefGoogle Scholar
  62. Tobler M (2009) Does a predatory insect contribute to the divergence between cave- and surface-adapted fish populations? Biol Lett 5:506–9PubMedCentralCrossRefPubMedGoogle Scholar
  63. Trontelj P, Douady CJ, Fišer C et al (2009) A molecular test for cryptic diversity in ground water: how large are the ranges of macro-stygobionts? Freshw Biol 54:727–744CrossRefGoogle Scholar
  64. van Riel MC, van der Velde G, Bij de Vaate A (2011) Dispersal of invasive species by drifting. Curr Zool 57:818–827Google Scholar
  65. Vawter AT, Fong WD, Culver CD (1987) Negative phototaxis in surface and cave populations of the amphipod Gammarus minus. Stygologia 3:83–88Google Scholar
  66. Weiss M, Macher JN, Seefeldt MA, Leese F (2014) Molecular evidence for further overlooked species within the Gammarus fossarum complex (Crustacea: Amphipoda). Hydrobiologia 721:165–184CrossRefGoogle Scholar
  67. White WB (2012) Springs. In: White WB, Culver DC (eds) Encyclopedia of Caves, 2nd edn. Academic Press, pp 797-805Google Scholar
  68. Wickham H (2009) ggplot2 - Elegant Graphics for Data Analysis. Springer, New York, USAGoogle Scholar
  69. Xiang Y, Yuan Q, Vogt N et al (2010) Light-avoidance-mediating photoreceptors tile the Drosophila larval body wall. Nature 468:921–926PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Žiga Fišer
    • 1
  • Luka Novak
    • 1
  • Roman Luštrik
    • 1
  • Cene Fišer
    • 1
  1. 1.Department of Biology, Biotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations