The Science of Nature

, 103:2 | Cite as

An endoparasitoid Cretaceous fly and the evolution of parasitoidism

  • Qingqing Zhang
  • Junfeng Zhang
  • Yitao Feng
  • Haichun Zhang
  • Bo Wang
Original Paper


Parasitoidism is a key innovation in insect evolution, and parasitoid insects, nowadays, play a significant role in structuring ecological communities. Despite their diversity and ecological impact, little is known about the early evolution and ecology of parasitoid insects, especially parasitoid true flies (Diptera). Here, we describe a bizarre fly, Zhenia xiai gen. et sp. nov., from Late Cretaceous Burmese amber (about 99 million years old) that represents the latest occurrence of the family Eremochaetidae. Z. xiai is an endoparasitoid insect as evidenced by a highly developed, hypodermic-like ovipositor formed by abdominal tergites VIII + IX that was used for injecting eggs into hosts and enlarged tridactylous claws supposedly for clasping hosts. Our results suggest that eremochaetids are among the earliest definite records of parasitoid insects. Our findings reveal an unexpected morphological specialization of flies and broaden our understanding of the evolution and diversity of ancient parasitoid insects.


Insecta Diptera Parasitoidism Cretaceous Burmese amber 



We are grateful to Prof. E.A. Jarzembowski for improving the English language of the manuscript and Mr. D.H. Yang for the reconstruction drawing. This research was supported by the National Basic Research Program of China (2012CB821900), National Natural Science Foundation of China (41572010, J1210006), and Youth Innovation Promotion Association of CAS (No. 2011224).


  1. Beckage NE (1985) Endocrine interactions between endoparasitic insects and their hosts. Annu Rev Entomol 30:371–413CrossRefGoogle Scholar
  2. Boucot AJ, Poinar JG (2010) Fossil behavior compendium. CRC Press, Boca RatoCrossRefGoogle Scholar
  3. Brodeur J, Boivin G (2004) Functional ecology of immature parasitoids. Annu Rev Entomol 49:27–49CrossRefPubMedGoogle Scholar
  4. Buschbeck E, Strausfeld J (1997) The relevance of neural architecture to visual performance: phylogenetic conservation and variation in Dipteran visual systems. J Comp Neurol 383:282–304CrossRefPubMedGoogle Scholar
  5. Chen J, Wang B, Engel MS, Wappler T, Jarzembowski EA, Zhang HC, Wang XL, Zheng XT, Rust J (2014) Extreme adaptations for aquatic ectoparasitism in a Jurassic fly larva. eLife 3:e02844PubMedCentralPubMedGoogle Scholar
  6. Eggleton P, Belshaw R (1992) Insect parasitoids: an evolutionary overview. Proc R Soc B 337:1–20Google Scholar
  7. Eggleton P, Belshaw R (1993) Comparison of dipteran, hymenopteran, and coleopteran parasitoids: provisional phylogenetic explanations. Biol J Linn Soc 48:213–226CrossRefGoogle Scholar
  8. Feener DH, Brown BV (1997) Diptera as parasitoids. Annu Rev Entomol 42:73–97CrossRefPubMedGoogle Scholar
  9. Gilbert FS, Jervis MA (1998) Functional, evolutionary and ecological aspects of feeding-related mouthpart specializations in parasitoid flies. Biol J Linn Soc 63:495–535CrossRefGoogle Scholar
  10. Godfray HCJ (1994) Parasitoids: behavioral and evolutionary ecology. Princeton Univ Press, PrincetonGoogle Scholar
  11. Grimaldi DA, Engel MS (2005) Evolution of the insects. Cambridge Univ Press, New YorkGoogle Scholar
  12. Grimaldi DA, Kathirithamby J, Schawaroch V (2005) Strepsiptera and triungula in Cretaceous amber. Insect Syst Evol 36:1–20CrossRefGoogle Scholar
  13. Grimaldi DA, Arillo A, Cumming JM, Hauser M (2011) Brachyceran Diptera (Insecta) in Cretaceous ambers, part IV, significant new Orthorrhaphous taxa. ZooKeys 148:293–332CrossRefPubMedGoogle Scholar
  14. Gross P (1993) Insect behavioral and morphological defenses against parasitoids. Annu Rev Entomol 38:251–273CrossRefGoogle Scholar
  15. Heraty J (2009) Parasitoid biodiversity and insect pest management, Insect biodiversity: science and society. Blackwell Publishing, Oxford, pp 445–462CrossRefGoogle Scholar
  16. Hong YC (1983) Middle Jurassic fossil insects in North China. Geological Publishing House, BeijingGoogle Scholar
  17. Kovalev VG (1989) Bremochaetidae, the Mesozoic family of brachycerous dipterans. Paleontol J 1989(2):100–105Google Scholar
  18. Labandeira CC (2002) Paleobiology of predators, parasitoids, and parasites: death and accommodation in the fossil record of continental invertebrates. Paleontol Soc Pap 8:211–250Google Scholar
  19. Lambkin CL, Sinclair BJ, Pape T, Courtney GW, Skevington JH, Meier R, Yeates DK, Blagoderov V, Wiegmann BW (2013) The phylogenetic relationships among infraorders and superfamilies of Diptera based on morphological evidence. Syst Entomol 38:164–179CrossRefGoogle Scholar
  20. Leung TLF (2015) Fossils of parasites: what can the fossil record tell us about the evolution of parasitism? Biol Rev. doi: 10.1111/brv.12238 PubMedGoogle Scholar
  21. Mostovski MB (1996) To the knowledge of Archisargoidea (Diptera, Brachycera). Families Eremochaetidae and Archisargidae. Russ Entomol J 5:117–124Google Scholar
  22. Myskowiak J, Azar D, Nel A (2015) The first fossil hilarimorphid fly (Diptera: Brachycera). Gondwana Res. doi: 10.1016/ Google Scholar
  23. Olmi M (1984) A revision of the Dryinidae (Hymenoptera). Mem Am Entomol Inst 37:17–947Google Scholar
  24. Peñalver E, Arillo A, Riccio ML, Pérez-De La Fuente R, Delclòs X, Barrón E, Grimaldi DA (2015) Long-proboscid flies as pollinators of Cretaceous gymnosperms. Curr Biol 25:1917–1923CrossRefPubMedGoogle Scholar
  25. Pritchard G (1983) Biology of Tipulidae. Annu Rev Entomol 28:1–22CrossRefGoogle Scholar
  26. Ronquist F, Klopfstein S, Vilhelmsen L, Schulmeister S, Murray DL, Rasnitsyn AP (2012) A total-evidence approach to dating with fossils, applied to the early radiation of the Hymenoptera. Syst Biol 61:973–999PubMedCentralCrossRefPubMedGoogle Scholar
  27. Ross A, Mellish C, York P, Crighton B (2010) Chapter 12. Burmese amber. In: Penney D (ed) Biodiversity of fossils in amber from the major world deposits. Siri Scientific Press, Manchester, pp 208–235Google Scholar
  28. Shi G, Grimaldi DA, Harlow GE, Wang J, Wang J, Yang M, Lei W, Li Q, Li X (2012) Age constraint on Burmese amber based on U-Pb dating of zircons. Cretac Res 37:155–163CrossRefGoogle Scholar
  29. Skevington JH, Dang PT (2002) Exploring the diversity of flies (Diptera). Biodiversity 3:3–27CrossRefGoogle Scholar
  30. Stireman O III (2006) Tachinidae: evolution, behavior, and ecology. Annu Rev Entomol 51:525–555CrossRefPubMedGoogle Scholar
  31. Stoffolano JG Jr, Yin LRS (1987) Structure and function of the ovipositor and associated sensilla of the apple maggot, Rhagoletis pomonella (Walsh) (Diptera: Tephritidae). Int J Insect Morphol Embryol 16:41–69CrossRefGoogle Scholar
  32. Ussatchov DA (1968) New Jurassic Asilomorpha (Diptera) in Karatau. Entomol Rev 47:617–628Google Scholar
  33. Vinson SB, Iwantsch GF (1980) Host regulation by insect parasitoids. Q Rev Biol 55:143–165CrossRefGoogle Scholar
  34. Wajnberg É, Bernstein C, van Alphen J (2008) Behavioral ecology of insect parasitoids: from theoretical approaches to field applications. Blackwell Publishing Ltd, OxfordCrossRefGoogle Scholar
  35. Whitfield JB (1998) Phylogeny and evolution of host-parasitoid interactions in Hymenoptera. Annu Rev Entomol 43:129–151CrossRefPubMedGoogle Scholar
  36. Wiegmann BM, Trautwein MD, Winkler IS, Barr NB, Kim J-W, Lambkin C, Bertone MA, Cassel BK, Bayless KM, Heimberg AM, Wheeler BM, Peterson KJ, Pape T, Sinclair BJ, Skevington JH, Blagoderov V, Caravas J, Kutty SN, Schmidt-Ott U, Kampmeier GE, Thompson FC, Grimaldi DA, Beckenbach AT, Courtney GW, Friedrich M, Meier R, Yeates DK (2011) Episodic radiations in the fly tree of life. Proc Natl Acad Sci U S A 108:5691–5695CrossRefGoogle Scholar
  37. Yeates DK (2002) Relationships of extant lower Brachycera (Diptera): a quantitative synthesis of morphological characters. Zool Scr 31:105–121CrossRefGoogle Scholar
  38. Zhang JF (2014a) New male eremochaetid flies (Diptera, Brachycera, Eremochaetidae) from the Lower Cretaceous of China. Cretac Res 49:205–221CrossRefGoogle Scholar
  39. Zhang JF (2014b) Archisargoid flies (Diptera, Brachycera, Archisargidae and Kovalevisargidae) from the Jurassic Daohugou biota of China, and the related biostratigraphical correlation and geological age. J Syst Palaeontol 13:857–881CrossRefGoogle Scholar
  40. Zhang KY, Yang D, Ren D (2014) New short-horned flies (Diptera: Eremochaetidae) from the Early Cretaceous of China. Zootaxa 3760:479–486CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Qingqing Zhang
    • 1
    • 2
  • Junfeng Zhang
    • 1
    • 3
  • Yitao Feng
    • 4
  • Haichun Zhang
    • 1
  • Bo Wang
    • 1
    • 5
  1. 1.State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and PalaeontologyChinese Academy of SciencesNanjingChina
  2. 2.University of the Chinese Academy of SciencesBeijingChina
  3. 3.College of PalaeontologyShenyang Normal UniversityShenyangChina
  4. 4.ShanghaiChina
  5. 5.Key Laboratory of Zoological Systematics and Evolution, Institute of ZoologyChinese Academy of ScienceBeijingChina

Personalised recommendations