Skip to main content
Log in

Antimicrobial properties of nest volatiles in red imported fire ants, Solenopsis invicta (hymenoptera: formicidae)

  • Short Communication
  • Published:
The Science of Nature Aims and scope Submit manuscript

Abstract

The antimicrobial property of volatiles produced by red imported fire ants, Solenopsis invicta, against Beauveria bassiana, a common entomopathogenic fungus, was demonstrated. The germination rate of B. bassiana spores was significantly reduced after they were exposed to volatiles within an artificial ant nest. Since the air that contained the same level of O2 and CO2 as that in artificial fire ant nests did not suppress the germination rate of B. bassiana, the observed reduction of germination rate must be caused by the toxicity of nest volatiles. Nest fumigation may be an important component of the social immune system in S. invicta.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Baracchi D, Mazza G, Turillazzi S (2012) From individual to collective immunity: the role of the venom as antimicrobial agent in the Stenogastrinae wasp societies. J Insect Physiol 58:188–193

    Article  PubMed  CAS  Google Scholar 

  • Brown WL Jr (1968) An hypothesis concerning the function of the metapleural glands in ants. Am Nat 102:188–191

    Article  Google Scholar 

  • Chen J, Rashid T, Feng G (2014) A comparative study between Solenopsis invicta and Solenopsis richteri on tolerance to heat and desiccation. PLoS One 9(6):e96842. doi:10.1371/journal.pone.0096842

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen J, Henderson G, Grimm CC, Lloyd SW, Laine RA (1998) Termites fumigate their nests with naphthalene. Nature 392:558–559

    Article  CAS  Google Scholar 

  • Christe P, Oppliger A, Bancala F, Castella G, Chapuisat M (2003) Evidence for collective medication in ants. Ecol Lett 6:19–22

    Article  Google Scholar 

  • Chuang PH, Lee CW, Chou JY, Murugan M, Shieh BJ, Chen HM (2006) Anti-fungal activity of crude extracts and essential oil of Moringa oleifera Lam. Bioresour Technol 98:232–236

    Article  PubMed  Google Scholar 

  • Cotter SC, Kilner RM (2010) Personal immunity versus social immunity. Behav Ecol 2:663–668

    Article  Google Scholar 

  • Cremer S, Armitage SAO, Schmid-Hempel P (2007) Social immunity. Curr Biol 17:R693–R702

    Article  PubMed  CAS  Google Scholar 

  • Hölldobler B, Engel-Siegel H (1984) On the metapleural gland of ants. Psyche 91:201–224

    Article  Google Scholar 

  • Lawniczak MKN, Barnes AI, Linklater JR, Boone JM, Wigby S, Chapman T (2007) Mating and immunity in invertebrates. Trends Ecol Evol 22:48–55

    Article  PubMed  Google Scholar 

  • Lenoir L, Bengtsson J, Persson T (1999) Effects of coniferous resin on fungal biomass and mineralisation processes in wood ant nest materials. Biol Fertil Soils 30:251–257

    Article  Google Scholar 

  • Ortius-Lechner D, Maile R, Morgan ED, Boomsma JJ (2000) Metapleural gland secretion of the leaf-cutter ant Acromyrmex octospinosus: new compounds and their functional significance. J Chem Ecol 26:1667–1683

    Article  CAS  Google Scholar 

  • Rosengaus RB, Maxmen AB, Coates LE, Traniello JFA (1998) Disease resistance: a benefit of sociality in the dampwood termite Zootermopsis angusticollis (Isoptera: Termopsidae). Behav Ecol Sociobiol 44:125–134

    Article  Google Scholar 

  • Schlüns H, Crozier RH (2009) Molecular and chemical immune defenses in ants (hymenoptera: formicidae). Myrmecol News 12:237–249

    Google Scholar 

  • Schmid-Hempel P (1998) Parasites in social insects. Princeton University Press, Princeton, New Jersey

    Google Scholar 

  • Starks PT, Blackie CA, Seeley TD (2000) Fever in honey bee colonies. Naturwissenschaften 87:229–231

    Article  PubMed  CAS  Google Scholar 

  • Storey GK, Vandermeer RK, Boucias DG, Mccoy CW (1991) Effect of fire ant (Solenopsis invicta) venom alkaloids on the in vitro germination and development of selected entomogenous fungi. J Invertebr Pathol 58:88–95

    Article  CAS  Google Scholar 

  • Tschinkel WR (1993) Sociometry and sociogenesis of colonies of the fire ant Solenopsis invicta during one annual cycle. Ecol Monogr 63:425–457

    Article  Google Scholar 

  • Vander Meer RK, Preston CA, Choi MY (2010) Isolation of a pyrazine alarm pheromone component from the fire ant, Solenopsis invicta. J Chem Ecol 36:163–170

    Article  PubMed  CAS  Google Scholar 

  • Wilson EO (1975) Sociobiology. Belknap Press, Cambridge, MA

    Google Scholar 

Download references

Acknowledgments

We thank Dr. Gregg Henderson, Department of Entomology, Louisiana State University, Baton Rouge, LA and Dr. Maribel Portilla, USDA-ARS, Southern Insect Management Research Unit, Stoneville, MS for critical reviews of the manuscript. Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U. S. Department of Agriculture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Chen.

Additional information

Communicated by: Alain Dejean

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 1646 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Elliott, B., Jin, X. et al. Antimicrobial properties of nest volatiles in red imported fire ants, Solenopsis invicta (hymenoptera: formicidae). Sci Nat 102, 66 (2015). https://doi.org/10.1007/s00114-015-1316-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00114-015-1316-1

Keywords

Navigation