The Science of Nature

, 102:30 | Cite as

Quantitative inferences on the locomotor behaviour of extinct species applied to Simocyon batalleri (Ailuridae, Late Miocene, Spain)

  • Anne-Claire FabreEmail author
  • Manuel J. Salesa
  • Raphael Cornette
  • Mauricio Antón
  • Jorge Morales
  • Stéphane Peigné
Original Paper


Inferences of function and ecology in extinct taxa have long been a subject of interest because it is fundamental to understand the evolutionary history of species. In this study, we use a quantitative approach to investigate the locomotor behaviour of Simocyon batalleri, a key taxon related to the ailurid family. To do so, we use 3D surface geometric morphometric approaches on the three long bones of the forelimb of an extant reference sample. Next, we test the locomotor strategy of S. batalleri using a leave-one-out cross-validated linear discriminant analysis. Our results show that S. batalleri is included in the morphospace of the living species of musteloids. However, each bone of the forelimb appears to show a different functional signal suggesting that inferring the lifestyle or locomotor behaviour of fossils can be difficult and dependent on the bone investigated. This highlights the importance of studying, where possible, a maximum of skeletal elements to be able to make robust inferences on the lifestyle of extinct species. Finally, our results suggest that S. batalleri may be more arboreal than previously suggested.


Ecomorphology Locomotion 3D geometric morphometrics Palaeobiological inference Forelimb 



We thank P. D. Polly, J. Samuels, R. Asher and an anonymous reviewer for helpful and constructive comments on an earlier version of this paper; we thank María Jesús Siliceo and Hospital Nuestra Señora de América (Madrid, Spain) for CT scanning the bones of S. batalleri. We thank J. Cuisin, G. Véron, J. Villemain and C. Bens for the access to specimens from the collections Mammifères et Oiseaux, MNHN, Paris; L. Costeur, from the Naturhistorisches Museum, Basel, J. Chupasko from the Harvard Museum of Comparative Zoology, Cambridge, Massachusetts, and S. Peurach from the Smithsonian National Museum of Natural History, Washington, District of Columbia for allowing us to scan the comparative material. We thank the ‘plate-forme de morphométrie’ of the UMS 2700 (CNRS, MNHN) for access to the surface scanner. A-C Fabre thanks the Fondation Fyssen, the doctoral school FdV, the Fondation Bettencourt-Schueller, and A. Murrayn and M. Collins to help her to obtain a UCL IMPACT scholarship for funding. MJS and JM belong to the Research Group UCM-BSCH 910607. We also thank A. Herrel, L. Bascher, F. Goussard, M. Randau, S. Moulin, C. Houssin and three anonymous reviewers for their helpful discussions and comments on this manuscript. The authors declare no conflict of interest.

Supplementary material

114_2015_1280_MOESM1_ESM.doc (9.5 mb)
ESM 1 (DOC 9733 kb)


  1. Afflerbaugh K (2002) "Conepatus chinga" (On-line), Animal Diversity Web. Accessed February 3, 2015 at
  2. Aguilar W (2003) "Ictonyx striatus" (On-line), Animal Diversity Web. Accessed February 3, 2015 at
  3. Alexander RMN (2006) Principles of animal locomotion. Princeton University Press, New JerseyGoogle Scholar
  4. Alfaro ME, Bolnick DI, Wainwright PC (2005) Evolutionary consequences of many-to-one mapping of jaw morphology to mechanics in labrid fishes. Am Nat 165:E140–54PubMedCrossRefGoogle Scholar
  5. Allegra J, Rath R, Gunderson A (2012) "Enhydra lutris" (On-line), Animal Diversity Web. Accessed February 3, 2015 at
  6. Andersson K (2003) Locomotor evolution in the Carnivora (Mammalia): evidence from the elbow joint. University of Uppsala, SwedenGoogle Scholar
  7. Andersson K (2004a) Predicting carnivoran body mass from a weight-bearing joint. J Zool 262:161–172CrossRefGoogle Scholar
  8. Andersson K (2004b) Elbow-joint morphology as a guide to forearm function and foraging behaviour in mammalian carnivores. Zool J Linn Soc 142:91–104CrossRefGoogle Scholar
  9. Andersson K (2005) Were there pack-hunting canids in the Tertiary, and how can we know? Paleobiology 31:56–72CrossRefGoogle Scholar
  10. Antón M, Salesa MJ, Morales J, Turner A (2004) First known complete skulls of the scimitar-toothed cat Machairodus aphanistus (Felidae, Carnivora) from the Spanish late Miocene site of Batallones-1. J Vertebr Paleontol 24:957–969CrossRefGoogle Scholar
  11. Antón M, Salesa MJ, Pastor JF, Peigné S, Morales J (2006) Implications of the functional anatomy of the hand and forearm of Ailurus fulgens (Carnivora, Ailuridae) for the evolution of the ‘false-thumb’ in pandas. J Anat 209:757–764Google Scholar
  12. Argot C (2001) Functional-adaptive anatomy of the forelimb in the Didelphidae, and the paleobiology of the Paleocene marsupials Mayulestes ferox and Pucadelphys andinus. J Morphol 247:51–79PubMedCrossRefGoogle Scholar
  13. Argot C (2003a) Functional adaptations of the postcranial skeleton of two Miocene borhyaenoids (Mammalia, Metatheria), Borhyaena and Prothylacinus, from South America. Palaeontology 46:1213–1267CrossRefGoogle Scholar
  14. Argot C (2003b) Functional-adaptive anatomy of the axial skeleton of some extant marsupials and the paleobiology of the Paleocene Marsupials Mayulestes ferox and Pucadelphys andinus. J Morphol 255:279–300PubMedCrossRefGoogle Scholar
  15. Argot C (2004) Functional-adaptive features and palaeobiologic implications of the postcranial skeleton of the late Miocene sabretooth borhyaenoid Thylacosmilus atrox (Metatheria). Alcheringa 28:229–266CrossRefGoogle Scholar
  16. Baylac M (2012) Rmorph: an R geometric and multivariate morphometrics library. Available from the author: baylac@mnhn.frGoogle Scholar
  17. Bender J (2001) "Pteronura brasiliensis" (On-line), Animal Diversity Web. Accessed February 3, 2015 at
  18. Berger L (2004) "Bassaricyon gabbii" (On-line), Animal Diversity Web. Accessed February 3, 2015 at
  19. Biknevicius AR, Mullineaux DR, Clayton HM (2004) Ground reaction forces and limb function in tölting Icelandic horses. Equine Vet J 36:743–747PubMedCrossRefGoogle Scholar
  20. Bock WJ, von Wahlert G (1965) Adaptation and the form-function complex. Evolution 19:269–299CrossRefGoogle Scholar
  21. Bookstein FL (1997) Landmark methods for forms without landmarks: morphometrics of group differences in outline shape. Med Image Anal 1:225–243PubMedCrossRefGoogle Scholar
  22. Bookstein FL, Green WDK (2002) Users Manual, EWSH3.19.
  23. Boyer DM, Bloch JI (2008) Evaluating the Mitten-Gliding hypothesis for Paromomyidae and Micromomyidae (Mammalia, “Plesiadapiformes”) using comparative functional morphology of new Paleogene skeletons. In: Sargis EJ, Dagosoto M (eds), Mammalian evolutionary morphology: a tribute to Frederick S. Szalay. Springer, Dordrecht, the Netherlands, pp 233–284Google Scholar
  24. Boyer DM, Seiffert ER, Simons EL (2010a) Astragalar morphology of Afradapis, a large adapiform primate from the earliest late Eocene of Egypt. Am J Phys Anthropol 143:383–402PubMedCrossRefGoogle Scholar
  25. Boyer DM, Prasad GVR, Krause DW, Godinot M, Goswami A, Verma O, Flynn JJ (2010b) New postcrania of Deccanolestes from the Late Cretaceous of India and their bearing on the evolutionary and biogeographic history of euarchontan mammals. Naturwissenschaften 97:365–377PubMedCrossRefGoogle Scholar
  26. Braddy S (2003) "Nasua nasua" (On-line), Animal Diversity Web. Accessed February 3, 2015 at
  27. Brilliant T (2000) "Poecilogale albinucha" (On-line), Animal Diversity Web. Accessed February 3, 2015 at
  28. Bryant HN, Russell AP (1992) The role of phylogenetic analysis in the inference of unpreserved attributes of extinct taxa. Phil Trans R Soc London B 337:405–418CrossRefGoogle Scholar
  29. Bryant HN, Seymour KL (1990) Observation and comments on the reliability of muscle reconstruction in fossil vertebrates. J Morphol 206:109–117CrossRefGoogle Scholar
  30. Carter K (2004) "Martes foina" (On-line), Animal Diversity Web. Accessed February 3, 2015 at
  31. Damuth J (1981) Population density and body size in mammals. Nature 290:699–700CrossRefGoogle Scholar
  32. Damuth J, MacFadden BJ (1990) Body size in mammalian paleobiology: estimation and biological implications. Cambridge University Press, CambridgeGoogle Scholar
  33. Davis DD (1964) The giant panda: a morphological study of evolutionary mechanisms. Fieldiana: Zool Mem 3:1–339Google Scholar
  34. Demes B, Larson S, Stern JT Jr, Jungers WL, Biknevicius AR, Schmitt D (1994) The kinetics of primate quadrupedalism: “Hind limb drive” reconsidered. J Hum Evol 26:353–374CrossRefGoogle Scholar
  35. Dubbelde E (2011) "Mustela eversmanii" (On-line), Animal Diversity Web. Accessed February 3, 2015 at
  36. Ercoli MD, Prevosti FJ, Alvarez A (2012) Form and function within a phylogenetic framework: locomotory habits of extant predators and some Miocene Sparassodonta (Metatheria). Zool J Linn Soc 165:224–251CrossRefGoogle Scholar
  37. Ewer RF (1973) The carnivores. Cornell University Press, Ithaca, NYGoogle Scholar
  38. Fabre A-C, Cornette R, Peigné S, Goswami A (2013a) Influence of body mass on the shape of forelimb in musteloid carnivorans. Biol J Linn Soc 110:91–103CrossRefGoogle Scholar
  39. Fabre A-C, Cornette R, Slater G, Argot C, Peigné S, Goswami A, Pouydebat E (2013b) Getting a grip on the evolution of grasping in musteloid carnivorans: a three-dimensional analysis of forelimb shape. J Evol Biol 26:1521–1535PubMedCrossRefGoogle Scholar
  40. Fabre A-C, Goswami A, Peigné S, Cornette R (2014) Morphological integration in the forelimb of musteloid carnivorans. J Anat 225:19–30PubMedCrossRefGoogle Scholar
  41. Fabre A-C, Cornette R, Goswami A, Peigné S (2015) Do constraints associated with the locomotor habitat drive the evolution of forelimb shape? A case study in musteloid carnivorans. J Anat. doi: 10.1111/joa.12315 PubMedGoogle Scholar
  42. Figueirido B, Janis CM (2011) The predatory behavior of the thylacine: Tasmanian tiger or marsupial wolf? Biol Lett 7:937–940PubMedCentralPubMedCrossRefGoogle Scholar
  43. Figueirido B, Pérez-Claros JA, Hunt RM Jr, Palmqvist P (2011) Body mass estimation in amphicyonid carnivoran mammals: a multiple regression approach from the skull and skeleton. Acta Palaeontol Pol 56:225–246CrossRefGoogle Scholar
  44. Flores DA, Díaz MM (2009) Postcranial skeleton of Glironia venusta (Didelphimorphia, Didelphidae, Caluromyinae): Description and Functional Morphology. Zoosyst Evol 85:311–339Google Scholar
  45. Fox R (2001) "Procyon lotor" (On-line), Animal Diversity Web. Accessed February 3, 2015 at
  46. Goldberg J (2003) "Bassariscus astutus" (On-line), Animal Diversity Web. Accessed February 3, 2015 at
  47. Gonyea WJ (1978) Functional implications of felid forelimb morphology. Acta Anat 102:111–121PubMedCrossRefGoogle Scholar
  48. Gould SJ, Vrba ES (1982) Exaptation—a missing term in the science of form. Paleobiology 8:4–15Google Scholar
  49. Gregg M (2013) "Galictis vittata" (On-line), Animal Diversity Web. Accessed February 3, 2015 at
  50. Gunz P, Mitteroecker P (2013) Semilandmarks: a method for quantifying curves and surfaces. Hystrix 24:1–7Google Scholar
  51. Gunz P, Mitteroecker P, Bookstein FL (2005) Semilandmarks in three dimensions. In: Slice SE (ed) Modern morphometrics in physical anthropology. Kluwer Academic/Plenum Publishers, New York, pp 73–98CrossRefGoogle Scholar
  52. Halenar LB (2011) Reconstructing the locomotor repertoire of Protopithecus brasiliensis. II. Forelimb morphology. Anat Rec 294:2048–2063CrossRefGoogle Scholar
  53. Heath T, Platnick J (2008) "Ailurus fulgens" (On-line), Animal Diversity Web. Accessed February 3, 2015 at
  54. Hildebrand M (1985) Functional vertebrate morphology. Harvard University Press, Cambridge, MassachusettsCrossRefGoogle Scholar
  55. Hildebrand M (1988) Analysis of vertebrate structure, 3th edition. Wiley & Sons: New York, NYGoogle Scholar
  56. Hoffman Z (2014) "Mellivora capensis" (On-line), Animal Diversity Web. Accessed February 3, 2015 at
  57. Hunter L, Barrett P (2011a) Carnivores of the world. Princeton University Press, Princeton, NJGoogle Scholar
  58. Hunter L, Barrett P (2011b) A Field Guide to the Carnivores of the World. New Holland Publishers: London, UK.Google Scholar
  59. Hutchinson JR (2004) Biomechanical modeling and sensitivity analysis of bipedal running ability. II. Extinct taxa. J Morphol 262:441–461PubMedCrossRefGoogle Scholar
  60. Hutchinson JR (2011) On the inference of function from structure using biomechanical modelling and simulation of extinct organisms. Biology Letters
  61. Hutchinson JR, Gatesy SM (2006) Beyond the bones. Nature 440:292–294PubMedCrossRefGoogle Scholar
  62. Hutchinson JR, Ng-Thow-Hing V, Anderson FC (2007) A 3D interactive method for estimating body segmental parameters in animals: application to the turning and running performance of Tyrannosaurus rex. J Theor Biol 246:660–680PubMedCrossRefGoogle Scholar
  63. Iwaniuk AN, Pellis SM, Whishaw IQ (1999) The relationship between forelimb morphology and behaviour in North American carnivores (Carnivora). Can J Zool 77:1064–1074CrossRefGoogle Scholar
  64. Iwaniuk AN, Pellis SM, Whishaw IQ (2000) The relative importance of body size, phylogeny, locomotion, and diet in the evolution of forelimb dexterity in fissiped carnivores (Carnivora). Can J Zool 78:1110–1125CrossRefGoogle Scholar
  65. Janis CM, Figueirido B (2014) Forelimb anatomy and the discrimination of the predatory behaviour of carnivorous mammals: the thylacine as a case study. J Morphol 275:1321–1338PubMedCrossRefGoogle Scholar
  66. Janis CM, Wilhelm PB (1993) Were there mammalian pursuit predators in the Tertiary? Dances with wolf avatars. J Mammal Evol 1:103–125CrossRefGoogle Scholar
  67. Jones ME, Stoddart DM (1998) Reconstruction of the predatory behaviour of the extinct marsupial thylacine (Thylacinus cynocephalus). J Zool (Lond) 246:239–246CrossRefGoogle Scholar
  68. Jungers WL, Burr DB, Cole MS (1998) Body size and scaling of long bone geometry, bone strength and positional behavior in cercopithecoid primates. In: Strasser E, Fleagle JG, Rosenberger A, McHenry H (eds) Primate locomotion: recent advances. Plenum, New York, pp 309–330CrossRefGoogle Scholar
  69. Kennedy S (2003) "Lutra lutra" (On-line), Animal Diversity Web. Accessed February 3, 2015 at
  70. Kiiskila J (2014) "Mephitis mephitis" (On-line), Animal Diversity Web. Accessed February 3, 2015 at
  71. Larivière S (2002) Ictonyx striatus. Mamm Species 698:1–5CrossRefGoogle Scholar
  72. Losos JB (2011) Convergence, adaptation and constraint. Evolution 65–7:1827–1840CrossRefGoogle Scholar
  73. Lundrigan B, Conley M (2001) "Mustela putorius" (On-line), Animal Diversity Web. Accessed February 3, 2015 at
  74. Marceau J (2001) "Nasua narica" (On-line), Animal Diversity Web. Accessed February 3, 2015 at
  75. Martín-Serra A, Figueirido B, Palmqvist P (2014) A three-dimensional analysis of morphological evolution and locomotor performance of the carnivoran forelimb. PLoS ONE 9:e85574PubMedCentralPubMedCrossRefGoogle Scholar
  76. McClearn D (1992) Locomotion, posture, and feeding behavior of kinkajous, coatis, and raccoons. J Mammal 73:245–261CrossRefGoogle Scholar
  77. Meachen-Samuels JA (2012) Morphological convergence of the prey-killing arsenal of sabertooth predators. Paleobiology 38:1–14CrossRefGoogle Scholar
  78. Meachen-Samuels JA, Van Valkenburgh B (2009) Forelimb indicators of prey-size preference in the Felidae. J Morphol 270:729–744PubMedCrossRefGoogle Scholar
  79. Meloro C, Elton S, Louys J et al (2013) Cats in the forest: predicting habitat adaptations from humerus morphometry in extant and fossil Felidae (Carnivora). Paleobiology 39:323–344CrossRefGoogle Scholar
  80. Nowak RM (2005) Walker’s carnivores of the world. The Johns Hopkins University Press, Baltimore, MDGoogle Scholar
  81. Patsy V, Sygo M (2009) "Gulo gulo" (On-line), Animal Diversity Web. Accessed February 3, 2015 at
  82. Peigné S, Salesa MJ, Antón M, Morales J (2008) A new amphicyonine (Carnivora: Amphicyonidae) from the Upper Miocene of Batallones-1, Madrid, Spain. Palaeontology 51:943–965CrossRefGoogle Scholar
  83. Pennington S (2002) "Spilogale putorius" (On-line), Animal Diversity Web. Accessed February 3, 2015 at
  84. Petroelje T (2011) "Vormela peregusna" (On-line), Animal Diversity Web. Accessed February 3, 2015 at
  85. Phillips N (2005) "Procyon cancrivorus" (On-line), Animal Diversity Web. Accessed February 3, 2015 at
  86. Polly PD (2008) Adaptive zones and the pinniped ankle: a 3D quantitative analysis of carnivoran tarsal evolution. In: Sargis E, Dagosto M (eds) Mammalian evolutionary morphology: a tribute to Frederick S. Szalay. Springer, Dordrecht, The Netherlands, pp 165–194Google Scholar
  87. Polly PD, Macleod N (2008) Locomotion in fossil carnivora: an application of eigensurface analysis for morphometric comparison of 3D surfaces. Palaeontol Electron 11(2):8AGoogle Scholar
  88. R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing. Vienna: R Foundation for Statistical Computing, ISBN 3-900051-07-0. Available at:
  89. Rehder D (2007) "Potos flavus" (On-line), Animal Diversity Web. Accessed February 3, 2015 at
  90. Roberts MS, Gittleman JL (1984) Ailurus fulgens. Mamm Species 222:1–8CrossRefGoogle Scholar
  91. Rohlf FJ, Slice DE (1990) Extensions of the procrustes method for the optimal superimposition of landmarks. Syst Zool 39:40–59CrossRefGoogle Scholar
  92. Ruff CB (2000) Biomechanical analyses of archeological human skeletons. In: Katzenberg MA, Saunders SR (eds) Biological anthropology of the human skeleton. Wiley-Liss, New York, pp 71–102Google Scholar
  93. Salesa MJ, Antón M, Turner A, Morales J (2005) Aspects of the functional morphology in the cranial and cervical skeleton of the sabre-toothed cat Paramachairodus ogygia (Kaup, 1832) (Felidae, Machairodontinae) from the Late Miocene of Spain: implications for the origins of the machairodont killing bite. Zool J Linn Soc 144:363–377CrossRefGoogle Scholar
  94. Salesa MJ, Antón M, Turner A, Morales J (2006) Inferred behaviour and ecology of the primitive sabre-toothed cat Paramachairodus ogygia (Felidae, Machairodontinae) from the Late Miocene of Spain. J Zool 268:243–254CrossRefGoogle Scholar
  95. Salesa MJ, Antón M, Peigné S, Morales J (2008) Functional anatomy and biomechanics of the postcranial skeleton of Simocyon batalleri (Viret, 1929) (Carnivora, Ailuridae) from the Late Miocene of Spain. Zool J Linn Soc 152:593–621CrossRefGoogle Scholar
  96. Salesa MJ, Antón M, Turner A, Morales J (2010) Functional anatomy of the forelimb in Promegantereon ogygia (Felidae, Machairodontinae, Smilodontini) from the Late Miocene of Spain and the origins of the sabre-toothed felid model. J Anat 216:381–396PubMedCentralPubMedCrossRefGoogle Scholar
  97. Samuels JX, Van Valkenburgh B (2008) Skeletal indicators of locomotor adaptations in living and extinct rodents. J Morphol 269:1387–1411PubMedCrossRefGoogle Scholar
  98. Samuels JX, Meachen JA, Sakai SA (2013) Postcranial morphology and the locomotor habits of living and extinct carnivorans. J Morphol 274:121–146PubMedCrossRefGoogle Scholar
  99. Savage M (2000) "Lontra felina" (On-line), Animal Diversity Web. Accessed February 3, 2015 at
  100. Schlimme K (2003) "Neovison vison" (On-line), Animal Diversity Web. Accessed February 3, 2015 at
  101. Schmitt D (2003) Substrate size and primate forelimb mechanics: implications for understanding the evolution of primate locomotion. Int J Primatol 24:1023–1036CrossRefGoogle Scholar
  102. Schmitt D, Lemelin P (2002) Origins of primate locomotion: gait mechanics of the woolly opossum. Amer J Phys Anthropol 118(3):231–238CrossRefGoogle Scholar
  103. Schreffler C (2003) "Eira barbara" (On-line), Animal Diversity Web. Accessed February 3, 2015 at
  104. Schutz H, Guralnick RP (2007) Postcranial element shape and function: assessing locomotor mode in extant and extinct mustelid carnivorans. Zool J Linn Soc 150:895–914CrossRefGoogle Scholar
  105. Schwanz L (2000) "Martes martes" (On-line), Animal Diversity Web. Accessed February 3, 2015 at
  106. Seefeldt R (2003) "Melogale moschata" (On-line), Animal Diversity Web. Accessed February 3, 2015 at
  107. Shalu T (2001) "Mustela lutreola" (On-line), Animal Diversity Web. Accessed February 3, 2015 at
  108. Shefferly N (1999) "Taxidea taxus" (On-line), Animal Diversity Web. Accessed February 3, 2015 at
  109. Siliceo G, Salesa MJ, Antón M, Pastor JF, Morales J (2015) Comparative anatomy of the shoulder region in the Late Miocene amphicyonid Magericyon anceps (Carnivora): functional and paleoecological inferences. J Mammal EvolGoogle Scholar
  110. Simpson GG (1953) The major features of evolution. Columbia biological series; no. 17 Columbia Univ. Press, New YorkGoogle Scholar
  111. Slater GJ, Harmon LJ, Alfaro ME (2012) Integrating fossils with molecular phylogenies improves inference of trait evolution. Evolution 66–12:3931–3944CrossRefGoogle Scholar
  112. Taylor ME (1989) Locomotor adaptation by carnivores. In: Gittleman JL (ed) Carnivore behavior, ecology, and evolution. Cornell University Press, New York, NY, pp 383–409Google Scholar
  113. Trapp GR (1972) Some anatomical and behavioural adaptations of ringtails, Bassariscus astutus. J Mammal 53:549–557CrossRefGoogle Scholar
  114. Van Valkenburgh B (1984) A morphological analysis of ecological separation within past and present predator guilds. Ph.D. dissertation, The Johns Hopkins University. University Microfilms, Ann ArborGoogle Scholar
  115. Van Valkenburgh B (1985) Locomotor diversity in past and present guilds of large predatory mammals. Paleobiology 11:406–428Google Scholar
  116. Van Valkenburgh B (1987) Skeletal indicators of locomotor behaviour in living and extinct carnivores. J Vert Paleontol 7:162–182CrossRefGoogle Scholar
  117. Van Valkenburgh B (1988) Trophic diversity in past and present guilds of large predatory mammals. Paleobiology 14:155–173Google Scholar
  118. Vrba ES (1992) Mammals as a key to evolutionary theory. J Mammal 73:1–28CrossRefGoogle Scholar
  119. Wade-Smith J, Verts B (1982) Mephitis mephitis. Mamm Species 173:1–7CrossRefGoogle Scholar
  120. Wainwright PC (2007) Functional versus morphological diversity in macroevolution. Annu Rev Evol Syst 38:381–401CrossRefGoogle Scholar
  121. Wainwright PC, Alfaro ME, Bolnick DI, Hulsey CD (2005) Many-to-one mapping of form to function: a general principle in organismal design? Integr Comp Biol 45:256–262PubMedCrossRefGoogle Scholar
  122. Walmsley A, Elton S, Louys J et al (2012) Humeral epiphyseal shape in the felidae: the influence of phylogeny, allometry, and locomotion. J Morphol 273:1424–1438PubMedCrossRefGoogle Scholar
  123. Wang A (2011) "Meles meles" (On-line), Animal Diversity Web. Accessed February 3, 2015 at
  124. Webb D, Sparrow WA (2007) Description of joint movements in human and non-human primate locomotion using Fourier analysis. Primates 48:277–292PubMedCrossRefGoogle Scholar
  125. Wiley DF, Amenta N, Alcantara DA, Ghosh D, Kil YJ, Delson E et al (2005) Evolutionary morphing. In: Proceedings of IEEE Visualization 2005 (VIS’05), 23–28 October 2005, Minneapolis, pp 431–438Google Scholar
  126. Williams RC (1955) The osteology and myology of the ranch mink (Mustela vison). PhD thesis, Cornell University Press, New YorkGoogle Scholar
  127. Wilson DE, Mittermeier RA (2009) Handbook of the mammals of the world, Lynx Edicions: BarcelonaGoogle Scholar
  128. Witmer LM (1995) The extant phylogenetic bracket and the importance of reconstructing soft tissues in fossils. In: Thomason JJ (ed) Functional morphology in vertebrate paleontology. Cambridge University Press, Cambridge, pp 19–33Google Scholar
  129. Yalden DW (1999) The history of British mammals. T and AD Poyser, LondonGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Anne-Claire Fabre
    • 1
    Email author
  • Manuel J. Salesa
    • 2
    • 3
  • Raphael Cornette
    • 4
  • Mauricio Antón
    • 3
  • Jorge Morales
    • 3
  • Stéphane Peigné
    • 5
  1. 1.Animal Locomotion Laboratory, Department of Evolutionary AnthropologyDuke UniversityDurhamUSA
  2. 2.Departamento de GeologiaFaculdade de Ciências da Universidade de LisboaLisboaPortugal
  3. 3.Departamento de PaleobiologíaMuseo Nacional de Ciencias Naturales—CSICMadridSpain
  4. 4.ISYEB–UMR 7205 CNRS, MNHNUniv. Paris 06, Muséum National d’Histoire NaturelleParisFrance
  5. 5.CR2P–UMR 7207 CNRS, MNHNUniv. Paris 06ParisFrance

Personalised recommendations