Skip to main content
Log in

A universal model of ontogenetic growth

  • Original Paper
  • Published:
The Science of Nature Aims and scope Submit manuscript

Abstract

The assumption that a single growth equation can be used to describe all biological objects on different organizational levels and a dimensional analysis are applied in order to substantiate universal model of ontogenetic growth. This model (the mass of a growing organism is a power function of time) is valid only in the initial period of growth. For the whole period of growth, a generalization of the model is advanced; it provides the same accuracy as previously known models of quantitative description of kinetic curves. Within the scope of the developed model, a number of interesting results related to allometry and biological time are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Andresen B, Shiner JS, Uehlinger DE (2002) Allometric scaling and maximum efficiency in physiological Eigen time. PNAS 99(9):5822–5824

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Aoki I (1989) Entropy flow and entropy production in the human body in basal conditions. J Theor Biol 141:11–21

    Article  CAS  PubMed  Google Scholar 

  • Aoki I (1991) Entropy principle for human development, growth and aging. J Theor Biol 150:215–223

    Article  CAS  PubMed  Google Scholar 

  • Backman G (1943) Wachstum und organische zeit. Leipzig, Barth

    Google Scholar 

  • Boddington MJ (1978) An absolute metabolic scope for activity. J Theor Biol 75:443–449

    Article  CAS  PubMed  Google Scholar 

  • Bridgman PW (1922) Dimensional analysis. Yale Univ Press, New Haven

    Google Scholar 

  • Brody S (1945) Bioenergetics and growth. Hafner Publishing, New York

    Google Scholar 

  • Capellini I, Venditti C, Barton RA (2010) Phylogeny and metabolic scaling in mammals. Ecology 91(9):2783–2793

    Article  PubMed  Google Scholar 

  • Carrel A (1929) Physiological time. Science 74:618–621

    Article  Google Scholar 

  • Dettlaff TA (1986) The rate of development in poikilothermic animals calculated in astronomical and relative time units. J Therm Biol 11

  • Dmi’el R (1967) Studies on reproduction, growth, and feeding in the snake Spalerosophis cliffordi (Colubridae). Copeia 1967(2):332–346

    Article  Google Scholar 

  • Forsyth DJ (1976) A field study of growth and development of nestling masked shrews (Sorex cinereus). J Mammal 57(4):708–721

    Article  CAS  PubMed  Google Scholar 

  • France J, Dijkstra J, Dhanoa MS (1996) Growth functions and their application in animal science. Ann Zootech 45:165–174

    Article  Google Scholar 

  • Gayon J (2000) History of the concept of allometry. Am Zool 40(5):748–758

    Article  Google Scholar 

  • Gier HT (1947) Growth rate in the cockroach Periplaneta americana (Linn). Ann Entomol Soc Am 40:303–317

    Article  CAS  Google Scholar 

  • Gompertz B (1825) On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. Phil Trans R Soc 115:513–585

  • Gould SJ (1966) Allometry and size in ontogeny and phylogeny. Biol Rev 41(4):587–638

    Article  CAS  PubMed  Google Scholar 

  • Gould SJ (1971) Geometric similarity in allometric growth: a contribution to the problem of scaling in the evolution of size. Am Nat 105(942):113–136

    Article  Google Scholar 

  • Grigolini P, Aquino G, Bologna M, Luković M, West BJ (2009) A theory of 1/f noise in human cognition. Physica A 388:4192–4204

    Article  Google Scholar 

  • Günther B (1975) Dimensional analysis and theory of biological similarity. Physiol Rev 55:659–699

    PubMed  Google Scholar 

  • Hou C, Zuo W, Moses ME, Woodruff WH, Brown JH, West GB (2008) Energy uptake and allocation during ontogeny. Science 322:736–739

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hou C, Zuo W, Moses ME, Woodruff WH, Brown JH, West GB (2009) Response to comments on “Energy uptake and allocation during ontogeny”. Science 325:1206

    Google Scholar 

  • Huxley J (1932) Problems of relative growth. Methuen & Co, London

    Google Scholar 

  • Kearney MR, White CR (2012) Testing metabolic theories. Am Nat 180:546–565

    Article  PubMed  Google Scholar 

  • Kofman GB (1982) Growth equation and ontogenetic allometry. Mathematical Biology of Development (Nauka, Moscow, in Russian) 49–55

  • Kolokotrones T, Savage V, Deeds EJ, Fontana W (2010) Curvature in metabolic scaling. Nature 464:753–756

    Article  CAS  PubMed  Google Scholar 

  • Kooijman SALM (1986) Energy budgets can explain body size relations. J Theor Biol 121:269–282

    Article  Google Scholar 

  • Lindstedt SL, Calder WA (1981) Body size, physiological time, and longevity of homeothermic animals. Q Rev Biol 56(1):1–16

    Article  Google Scholar 

  • MacKay NJ (2011) Mass scale and curvature in metabolic scaling. Comment on: T. Kolokotrones, et al., Curvature in metabolic scaling, Nature 464 (2010) 753–756. J Theor Biol 280:194–196

    Article  PubMed  Google Scholar 

  • Mac Dowell EC, Allen E, Mac Dowell CG (1927) The prenatal growth of the mouse. J Gen Physiol 11(1):57–70

    Article  CAS  Google Scholar 

  • Makarieva AM, Gorshkov VG, Li B-L (2004) Ontogenetic growth: models and theory. Ecol Model 176:15–26

    Article  Google Scholar 

  • Makarieva AM, Gorshkov VG, Li B-L (2009) Comment on “Energy uptake and allocation during ontogeny”. Science 325:1206

    Article  CAS  PubMed  Google Scholar 

  • Martyushev LM (2013a) Entropy and entropy production: old misconceptions and new breakthroughs. Entropy 15:1152–1170

    Article  Google Scholar 

  • Martyushev LM (2013b) Ontogenetic growth: Schmalhausen or von Bertalanffy? Comment on “Physiologic time: a hypothesis” by D West and BJ West. Phys Life Rev 10:389–390

    Article  CAS  PubMed  Google Scholar 

  • Martyushev LM, Seleznev VD (2006) Maximum entropy production principle in physics, chemistry and biology. Phys Rep 426:1–45

    Article  CAS  Google Scholar 

  • Martyushev LM, Terentiev PS (2012) Normalized increment of crystal mass as a possible universal parameter for dendritic growth. Phys Rev E 85(4):041604, 1–9

    Article  CAS  Google Scholar 

  • Martyushev LM, Terentiev PS (2013) Specific mass increment and nonequilibrium crystal growth. Phys A 392:3819–3826

    Article  CAS  Google Scholar 

  • McGarvey R, Ferguson GJ, Prescott JH (1999) Spatial variation in mean growth rates at size of southern rock lobster, Jasus edwardsii, in South Australian waters. Mar Freshw Res 50(4):333–342

    Article  Google Scholar 

  • McNab BK (2008) An analysis of the factors that influence the level and scaling of mammlians BMR. Comp Biochem Physiol A Mol Integr Physiol 151:5–28

    Article  PubMed  Google Scholar 

  • Medawar PB (1941) The ‘laws’ of biological growth. Nature 148:772–774

    Article  Google Scholar 

  • Murray HA (1925) Physiological ontogeny. A. Chicken embryos. III. Weight and growth rate as function of age. J Gen Physiol 9(1):1–37

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Naroll RS, von Bertalanffy L (1956) The principle of allometry in biology and the social sciences. Gen Syst 1:76–89

    Google Scholar 

  • Nelson JB (1964) Factors influencing clutch-size and chick growth in the north Atlantic gannet, Sula bassana. IBIS 106:63–77

    Article  Google Scholar 

  • du Noüy PL (1937) Biological time. Macmillan, New York

    Google Scholar 

  • Parks JR (1982) A theory of feeding and growth of animals. Springer, Berlin

    Book  Google Scholar 

  • Payne MR (1979) Growth in the Antarctic fur seal Arctocephalus gazella. J Zool 187:1–20

    Article  Google Scholar 

  • Pratt HK, Reid MS (1974) Chinese gooseberry: seasonal patterns in fruit growth and maturation, ripening, respiration and the role of ethylene. J Sci Food Agric 25:747–757

    Article  CAS  Google Scholar 

  • Rahman MA (2007) A novel method for estimating the entropy generation rate in a human body. Therm Sci 11(1):75–92

    Article  Google Scholar 

  • Reiss JO (1989) The meaning of developmental time: a metric for comparative embryology. Am Nat 134(2):170–189

    Article  Google Scholar 

  • Richardson IW, Rosen R (1979) Aging and the metrics of time. J Theor Biol 79:415–423

    Article  CAS  PubMed  Google Scholar 

  • Ricketts C, Prince PA (1981) Comparison of growth of albatrosses. Ornis Scand 12(2):120–124

    Article  Google Scholar 

  • Schmalhausen I (1927) Beiträge zur quantitativen analyse der formbildung. II. Das problem des proportionalen wachstums. Wilhelm Roux Arch Entwickl Mech Org 110(1):33–62

    Article  Google Scholar 

  • Schmalhausen I (1928) Das wachstumsgesetz und die methode der bestimmung der wachstumskonstante. Wilhelm Roux Arch Entwickl Mech Org 113(3):462–519

    Article  Google Scholar 

  • Schmalhausen I (1930a) Das wachstumsgesetz als gesetz der progressiven differenzierung. Wilhelm Roux Arch Entwickl Mech Org 123(1):153–178

    Article  Google Scholar 

  • Schmalhausen I (1930b) Über wachstumsformen und wachstumstheorien. Biol Zent 50(5):292–307

    Google Scholar 

  • Schmidt-Nielsen K (1984) Scaling. Why is animal size so important? Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Shipley B, Hunt R (1996) Regression smoothers for estimating parameters of growth analyses. Ann Bot 78:569–576

    Article  Google Scholar 

  • Smith IP, Jensen AC (2008) Dynamics of closed areas in Norway lobster fisheries. J Mar Sci 65:1600–1609

    Google Scholar 

  • Sorensen MF, Rogers JP, Baskett TS (1968) Reproduction and development in confined swamp rabbits. J Wildl Manag 32(3):520–531

    Article  Google Scholar 

  • Specziár A, Tölg L, Biro P (1997) Feeding strategy and growth of cyprinids in the littoral zone of Lake Balaton. J Fish Biol 51:1109–1124

    Google Scholar 

  • Stahl WR (1962) Similarity and dimensional methods in biology. Science 137:205–212

    Article  CAS  PubMed  Google Scholar 

  • Thoresen AC (1964) The breeding behavior of the Cassin’s auklet. Condor 66:456–476

    Article  Google Scholar 

  • van der Meer J (2006) Metabolic theories in ecology. Trends Ecol Evol 21:136–140

    Article  PubMed  Google Scholar 

  • Verhulst P-F (1838) Notice sur la loi que la population poursuit dans son accroissement. Correspondance mathématique et physique 10:113–121

  • von Bertalanffy L (1957) Quantitative laws in metabolism and growth. Q Rev Biol 32:217–231

    Article  Google Scholar 

  • West GB, Brown JH, Enquist BJ (1997) A general model for the origin of allometric scaling laws in biology. Science 276:122–126

    Article  CAS  PubMed  Google Scholar 

  • West GB, Brown JH, Enquist BJ (2001) A general model for ontogenetic growth. Nature 413:628–631

    Article  CAS  PubMed  Google Scholar 

  • West D, West BJ (2013) Physiologic time: a hypothesis. Phys Life Rev 10:210–224

    Article  PubMed  Google Scholar 

  • White CR, Saymour RS (2003) Mammalian basal metabolic rate is proportional to body mass2/3. PNAS 100(7):4046–4049

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • White CR, Saymour RS (2005) Review allometric scaling of mammalian metabolism. J Exp Biol 208:1611–1619

    Article  CAS  PubMed  Google Scholar 

  • Wilbur HM (1975) A growth model for the turtle Chrysemys picta. Copeia 1975(2):337–343

    Article  Google Scholar 

  • Yosida TH (1978) Experimental breeding and cytogenetics of the soft-furred rat, Millardia meltada. Lab Anim 12:73–77

    Article  CAS  PubMed  Google Scholar 

  • Zach R, Mayoh KR (1982) Weight and feather growth of nestling tree swallows. Can J Zool 60:1080–1090

    Article  Google Scholar 

  • Zeide B (1993) Analysis of growth equations. For Sci 39(2):594–616

    Google Scholar 

  • Zotin AI (1990) Thermodynamic bases of biological processes. Walter de Gruyter, Berlin

    Book  Google Scholar 

  • Zotin AA, Zotin AI (1997) Phenomenological theory of ontogenesis. Int J Dev Biol 41(6):917–921

    CAS  PubMed  Google Scholar 

  • Zotin AI, Zotina RS (1967) Thermodynamic aspects of developmental biology. J Theor Biol 17:57–75

    Article  CAS  PubMed  Google Scholar 

  • Zullinger EM, Ricklefs RE, Redford KH, Mace GM (1984) Fitting sigmoidal equations to mammalian growth curves. J Mammal 65(4):607–636

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Prof. Vladimir D. Seleznev and Nikita Rukosuev for a thorough discussion of this research. We also express our thanks to anonymous reviewers for their numerous comments and questions that improved our paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonid M. Martyushev.

Additional information

Communicated by: Sven Thatje

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martyushev, L.M., Terentiev, P.S. A universal model of ontogenetic growth. Sci Nat 102, 29 (2015). https://doi.org/10.1007/s00114-015-1278-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00114-015-1278-3

Keywords

Navigation