Advertisement

Naturwissenschaften

, Volume 101, Issue 12, pp 1055–1063 | Cite as

Environmental effects on the shape variation of male ultraviolet patterns in the Brimstone butterfly (Gonepteryx rhamni, Pieridae, Lepidoptera)

  • Pavel Pecháček
  • David Stella
  • Petr Keil
  • Karel Kleisner
Original Paper

Abstract

The males of the Brimstone butterfly (Gonepteryx rhamni) have ultraviolet pattern on the dorsal surfaces of their wings. Using geometric morphometrics, we have analysed correlations between environmental variables (climate, productivity) and shape variability of the ultraviolet pattern and the forewing in 110 male specimens of G. rhamni collected in the Palaearctic zone. To start with, we subjected the environmental variables to principal component analysis (PCA). The first PCA axis (precipitation, temperature, latitude) significantly correlated with shape variation of the ultraviolet patterns across the Palaearctic. Additionally, we have performed two-block partial least squares (PLS) analysis to assess co-variation between intraspecific shape variation and the variation of 11 environmental variables. The first PLS axis explained 93 % of variability and represented the effect of precipitation, temperature and latitude. Along this axis, we observed a systematic increase in the relative area of ultraviolet colouration with increasing temperature and precipitation and decreasing latitude. We conclude that the shape variation of ultraviolet patterns on the forewings of male Brimstones is correlated with large-scale environmental factors.

Keywords

Ultraviolet reflectance Geographic variation Evolution Sexual selection Geometric morphometrics UV ornaments 

Notes

Acknowledgments

We wish to thank Jaan Luig and Pavel Chvojka for their help with providing the butterflies and David Hořák, Victor Benno Meyer-Rochow, Nathan Morehouse and two anonymous referees for their useful comments. This research was supported by the Czech Grant Agency project GACR P505/11/1459. PK was supported by EU FP7 People Programme (Marie Curie Actions; REA agreement no. 302868; project WORLDIVERSITY). PP and DS were supported by the Charles University Grant Agency project GAUK 764313.

References

  1. Allen JA (1877) The influence of physical conditions in the genesis of species. Radic Rev 1:108–140Google Scholar
  2. Anonymous (1910) Schmetterlinge. In: Meyers Grosses Konversations-Lexikon (6th edition, vol. 21). Bibliographisches Institut, Leipzig and Wien, pp 803–807Google Scholar
  3. Bajer K, Molnar O, Torok J, Herczeg G (2012) Temperature, but not available energy, affects the expression of a sexually selected ultraviolet (UV) colour trait in male European green lizards. PLoS One 7:e34359. doi: 10.1371/journal.pone.0034359 PubMedCentralPubMedCrossRefGoogle Scholar
  4. Battisti A, Stastny M, Netherer S, Robinet C, Schopf A, Roques A, Larsson S (2005) Expansion of geographic range in the pine processionary moth caused by increased winter temperatures. Ecol Appl 15:2084–2096CrossRefGoogle Scholar
  5. Beldade P, Brakefield PM (2002) The genetics and evo-devo of butterfly wing patterns. Nat Rev Genet 3:442–452. doi: 10.1038/nrg818 PubMedGoogle Scholar
  6. Bergmann C (1847) Über die Verhältnisse der Wärmeökonomie der Thiere zu ihrer Grösse. Göttinger Stud 3:595–708Google Scholar
  7. Brakefield PM (1987) Tropical dry and wet season polyphenism in the butterfly Melanitis leda (Satyrinae): phenotypic plasticity and climatic correlates. Biol J Linn Soc 31:175–191. doi: 10.1111/j.1095-8312.1987.tb01988.x CrossRefGoogle Scholar
  8. Brakefield PM, French V (1999) Butterfly wings: the evolution of development of colour patterns. BioEssays 21:391–401. doi: 10.1002/(sici)1521-1878(199905)21:5<391::aid-bies6>3.0.co;2-q CrossRefGoogle Scholar
  9. Brakefield P, Pijpe J, Zwaan B (2007) Developmental plasticity and acclimation both contribute to adaptive responses to alternating seasons of plenty and of stress in Bicyclus butterflies. J Biosci 32:465–475. doi: 10.1007/s12038-007-0046-8 PubMedCrossRefGoogle Scholar
  10. Brunton CFA (1998) The evolution of ultraviolet patterns in European Colias butterflies (Lepidoptera, Pieridae): a phylogeny using mitochondrial DNA. Heredity 80:611–616. doi: 10.1046/j.1365-2540.1998.00336.x CrossRefGoogle Scholar
  11. Brunton CFA, Majerus MEN (1995) Ultraviolet colors in butterflies—intraspecific or inter-specific communication. Proc R Soc B Biol Sci 260:199–204. doi: 10.1098/rspb.1995.0080 CrossRefGoogle Scholar
  12. Chown SL, Gaston KJ (2010) Body size variation in insects: a macroecological perspective. Biol Rev 85:139–169PubMedCrossRefGoogle Scholar
  13. Cramer W et al (1999) Comparing global models of terrestrial net primary productivity (NPP): overview and key results. Glob Chang Biol 5:1–15. doi: 10.1046/j.1365-2486.1999.00009.x CrossRefGoogle Scholar
  14. De Jong MA, Kesbeke FMNH, Brakefield PM, Zwaan BJ (2010) Geographic variation in thermal plasticity of life history and wing pattern in Bicyclus anynana. Clim Res 43:91–102. doi: 10.3354/cr00881 CrossRefGoogle Scholar
  15. DeVoe RD, Small RJ, Zvargulis JE (1969) Spectral sensitivities of wolf spider eyes. J Gen Physiol 54:1–32. doi: 10.1085/jgp.54.1.1 PubMedCentralPubMedCrossRefGoogle Scholar
  16. Diniz-Filho JAF, De Marco JP, Hawkins BA (2010) Defying the curse of ignorance: perspectives in insect macroecology and conservation biogeography. Insect Conserv Divers 3:172–179. doi: 10.1111/j.1752-4598.2010.00091.x Google Scholar
  17. Dixon AFG, Honěk A, Keil P, Kotela MAA, Šizling AL, Jarošík V (2009) Relationship between the minimum and maximum temperature thresholds for development in insects. Funct Ecol 23:257–264. doi: 10.1111/j.1365-2435.2008.01489.x CrossRefGoogle Scholar
  18. Eguchi E, Meyer-Rochow VB (1983) Ultraviolet photography of forty-three species of lepidoptera representing ten families. Annot Zool Jpn 56:10–18Google Scholar
  19. Ellers J, Boggs CL (2002) The evolution of wing color in Colias butterflies: heritability, sex linkage, and population divergence. Evolution 56:836–840PubMedCrossRefGoogle Scholar
  20. Fischer K, Karl I (2010) Exploring plastic and genetic responses to temperature variation using copper butterflies. Clim Res 43:17–30. doi: 10.3354/cr00892 CrossRefGoogle Scholar
  21. Giese AC (1946) Comparative sensitivity of sperm and eggs to ultraviolet radiations. Biol Bull 91:81–87PubMedCrossRefGoogle Scholar
  22. Gould SJ, Lewontin RC (1979) The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proc R Soc B Biol Sci 205:581–598. doi: 10.1098/rspb.1979.0086 CrossRefGoogle Scholar
  23. Gould SJ, Vrba ES (1982) Exaptation; a missing term in the science of form. Paleobiology 8:4–15Google Scholar
  24. Hawkins BA, Porter EE (2003) Water–energy balance and the geographic pattern of species richness of western Palearctic butterflies. Ecol Entomol 28:678–686. doi: 10.1111/j.1365-2311.2003.00551.x CrossRefGoogle Scholar
  25. Heiling AM, Herberstein ME, Chittka L (2003) Pollinator attraction: crab-spiders manipulate flower signals. Nature 421:334. doi: 10.1038/421334a PubMedCrossRefGoogle Scholar
  26. Heiling AM, Chittka L, Cheng K, Herberstein ME (2005) Colouration in crab spiders: substrate choice and prey attraction. J Exp Biol 208:1785–1792. doi: 10.1242/jeb.01585 PubMedCrossRefGoogle Scholar
  27. Herman JR, Krotkov N, Celarier E, Larko D, Labow G (1999) Distribution of UV radiation at the Earth’s surface from TOMS-measured UV-backscattered radiances. J Geophys Res Atmos 104:12059–12076. doi: 10.1029/1999jd900062 CrossRefGoogle Scholar
  28. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. doi: 10.1002/joc.1276 CrossRefGoogle Scholar
  29. Hovanitz W (1944) The Ecological significance of the color phases of Colias chrysotheme in North America. Ecology 25:45–60CrossRefGoogle Scholar
  30. Huth HH, Burkhardt D (1972) Der spektrale Sehbereich eines Violettohr-Kolibris. Die Naturwissenschaften 59:650PubMedCrossRefGoogle Scholar
  31. Karl I, Geister TL, Fischer K (2009) Intraspecific variation in wing and pupal melanization in copper butterflies (Lepidoptera: Lycaenidae). Biol J Linn Soc 98:301–312. doi: 10.1111/j.1095-8312.2009.01284.x CrossRefGoogle Scholar
  32. Kemp DJ (2006) Heightened phenotypic variation and age-based fading of ultraviolet butterfly wing coloration. Evol Ecol Res 8:515–527Google Scholar
  33. Kemp DJ (2008a) Female mating biases for bright ultraviolet iridescence in the butterfly Eurema hecabe (Pieridae). Behav Ecol 19:1–8. doi: 10.1093/beheco/arm094 CrossRefGoogle Scholar
  34. Kemp DJ (2008b) Resource-mediated condition dependence in sexually dichromatic butterfly wing coloration. Evolution 62:2346–2358. doi: 10.1111/j.1558-5646.2008.00461.x PubMedCrossRefGoogle Scholar
  35. Kemp DJ, Rutowski RL (2007) Condition dependence, quantitative genetics, and the potential signal content of iridescent ultraviolet butterfly coloration. Evolution 61:168–183. doi: 10.1111/j.1558-5646.2007.00014.x PubMedCrossRefGoogle Scholar
  36. Kemp DJ, Rutowski RL (2011) The role of coloration in mate choice and sexual interactions in butterflies. In: Brockmann HJ, Roper T, Naguib M, Wynne-Edwards K, Barnard C, Mitani J (eds) Advances in the study of behavior, vol 43. Elsevier, Amsterdam, pp 55–92. doi: 10.1016/B978-0-12-380896-7.00002-2 Google Scholar
  37. Kemp DJ, Vukusic P, Rutowski RL (2006) Stress-mediated covariance between nano-structural architecture and ultraviolet butterfly coloration. Funct Ecol 20:282–289. doi: 10.1111/j.1365-2435.2006.01100.x CrossRefGoogle Scholar
  38. Kleisner K (2008) Homosemiosis, mimicry and superficial similarity: notes on the conceptualization of independent emergence of similarity in biology. Theory Biosci 127:15–21. doi: 10.1007/s12064-007-0019-3 PubMedCrossRefGoogle Scholar
  39. Kleisner K (2011) Perceive, Co-opt, modify, and live! Organism as a centre of experience. Biosemiotics 4:223–241CrossRefGoogle Scholar
  40. Kleisner K, Keil P, Jaroš F (2012) Biogeography of elytral ornaments in Palearctic genus Carabus: disentangling the effects of space, evolution and environment at a continental scale. Evol Ecol 26:1025–1040. doi: 10.1007/s10682-011-9537-z CrossRefGoogle Scholar
  41. Knuttell H, Fiedler K (2000) On the use of ultraviolet photography and ultraviolet wing patterns in butterfly morphology and taxonomy. J Lepidopterol Soc 54:137–144Google Scholar
  42. Kudrna O (1975) A revision of the genus Gonepteryx Leach (Lep., Pieridae). Entomol Gaz 26:3–37Google Scholar
  43. Lubbock J (1882) Ants, bees, and wasps. A record of observations on the habits of the social Hymenoptera. D. Appleton and Co., New YorkCrossRefGoogle Scholar
  44. Lutz FE (1924) Apparently non-selective characters and combinations of characters, including a study of ultraviolet in relation to the flower-visiting habits of insects. Ann N Y Acad Sci 29:181–283CrossRefGoogle Scholar
  45. Lutz FE (1933a) Experiments with “stingless bees” (Trigona cressoni parastigma) concerning their ability to distinguish ultraviolet patterns. Am Mus Novit 641:1–26Google Scholar
  46. Lutz FE (1933b) Invisible colors of flowers and butterflies. Nat Hist 33:565–567Google Scholar
  47. Lutz FE, Richtmyer FK (1922) The reaction of Drosophila to ultraviolet. Science 55:519–519PubMedCrossRefGoogle Scholar
  48. Maran T, Kleisner K (2010) Towards an evolutionary biosemiotics: semiotic selection and semiotic co-option. Biosemiotics 3:189–200CrossRefGoogle Scholar
  49. Mazokhin-Porshnyakov GA (1957) Reflecting properties of butterfly wings and the role of ultra-violet rays in the vision of insects. Biophysics 2:285–296Google Scholar
  50. Meyer-Rochow VB (1991) Differences in ultraviolet wing patterns in the New Zealand lycaenid butterflies Lycaena salustius, L. rauparaha, and L. feredayi as a likely isolating mechanism. J R Soc N Z 21:169–177. doi: 10.1080/03036758.1991.10431405 CrossRefGoogle Scholar
  51. Meyer-Rochow VB, Järvilehto M (1997) Ultraviolet colours in Pieris napi from northern and southern Finland: arctic females are the brightest! Naturwissenschaften 84:165–168. doi: 10.1007/s001140050373 CrossRefGoogle Scholar
  52. Morehouse NI, Rutowski RL (2010) Developmental responses to variable diet composition in the cabbage white butterfly, Pieris rapae: the role of nitrogen, carbohydrates and genotype. Oikos 119:636–645. doi: 10.1111/j.1600-0706.2009.17866.x CrossRefGoogle Scholar
  53. Morehouse NI, Vukusic P, Rutowski R (2007) Pterin pigment granules are responsible for both broadband light scattering and wavelength selective absorption in the wing scales of pierid butterflies. Proc R Soc B Biol Sci 274:359–366Google Scholar
  54. Nekrutenko YP (1965a) Gynandromorphic effect and the optical nature of hidden wing-pattern in Gonepteryx rhamni L. (Lepidoptera, Pieridae). Nature 205:417–418CrossRefGoogle Scholar
  55. Nekrutenko YP (1965b) Three cases of gynandromorphism in Gonepteryx. J Res Lepidoptera 4:103–108Google Scholar
  56. Nekrutenko YP (1968) Phylogeny and geographical distribution of the genus Gonepteryx (Lepidoptera, Pieridae): An attempt of study in historical zoogeography. Naukova dumka, KievGoogle Scholar
  57. Nekrutenko YP (1970) A new subspecies of Gonepteryx rhamni from Tian-shan Mountains, U.S.S.R. J Lepid Soc 34:218–220Google Scholar
  58. Oksanen J et al. (2011) vegan: Community ecology package. R package version 2.0–2Google Scholar
  59. Papke R, Kemp D, Rutowski R (2007) Multimodal signalling: structural ultraviolet reflectance predicts male mating success better than pheromones in the butterfly Colias eurytheme L. (Pieridae). Anim Behav 73:47–54. doi: 10.1016/j.anbehav.2006.07.004 CrossRefGoogle Scholar
  60. Pike T (2011) Using digital cameras to investigate animal colouration: estimating sensor sensitivity functions. Behav Ecol Sociobiol 65:849–858. doi: 10.1007/s00265-010-1097-7 CrossRefGoogle Scholar
  61. Pirih P, Wilts BD, Stavenga DG (2011) Spatial reflection patterns of iridescent wings of male pierid butterflies: curved scales reflect at a wider angle than flat scales. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 197:987–997. doi: 10.1007/s00359-011-0661-6 PubMedCentralPubMedCrossRefGoogle Scholar
  62. Pope RD, Hinton HE (1977) A preliminary survey of ultraviolet reflectance in beetles. Biol J Linn Soc 9:331–348. doi: 10.1111/j.1095-8312.1977.tb00275.x CrossRefGoogle Scholar
  63. Prudic KL, Jeon C, Cao H, Monteiro A (2011) Developmental plasticity in sexual roles of butterfly species drives mutual sexual ornamentation. Science 331:73–75. doi: 10.1126/science.1197114 PubMedCrossRefGoogle Scholar
  64. R Development Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  65. Robertson KA, Monteiro A (2005) Female Bicyclus anynana butterflies choose males on the basis of their dorsal UV-reflective eyespot pupils. Proc R Soc B Biol Sci 272:1541–1546. doi: 10.1098/rspb.2005.3142 CrossRefGoogle Scholar
  66. Rohlf JF (2006) TpsPLS (version 1.18). Department of Ecology and Evolution, State University of New York at Stony Brook, New YorkGoogle Scholar
  67. Rohlf JF (2008) tpsRelw version 1.46. Department of Ecology and Evolution, State University of New York at Stony Brook, Stony BrookGoogle Scholar
  68. Rohlf JF (2009a) TpsDig2 (version 2.14). New York: Department of Ecology and Evolution, State University of New York at Stony BrookGoogle Scholar
  69. Rohlf JF (2009b) TpsRegr (version 1.36). New York: Department of Ecology and Evolution, State University of New York at Stony BrookGoogle Scholar
  70. Rohlf FJ, Corti M (2000) Use of two-block partial least-squares to study covariation in shape. Syst Biol 49:740–753. doi: 10.1080/106351500750049806 PubMedCrossRefGoogle Scholar
  71. Rohlf FJ, Loy A, Corti M (1996) Morphometric analysis of old world talpidae (Mammalia, Insectivora) using partial-warp scores. Syst Biol 45:344–362. doi: 10.1093/sysbio/45.3.344 CrossRefGoogle Scholar
  72. Schmitz-Ornés A (2006) Using colour spectral data in studies of geographic variation and taxonomy of birds: examples with two hummingbird genera, Anthracothorax and Eulampis. J Ornithol 147:495–503. doi: 10.1007/s10336-006-0053-9 CrossRefGoogle Scholar
  73. Silberglied RE (1979) Communication in the ultraviolet. Annu Rev Ecol Syst 10:373–398. doi: 10.1146/annurev.es.10.110179.002105 CrossRefGoogle Scholar
  74. Silberglied RE (1984) Visual communication and sexual selection among butterflies. In: Vane-Wright RI, Ackery PR (eds) The biology of butterflies. Academic, London, pp 207–223Google Scholar
  75. Silberglied RE, Taylor OR (1978) Ultraviolet reflection and its behavioral role in courtship of sulfur butterflies Colias eurytheme and Colias philodice (Lepidoptera, Pieridae). Behav Ecol Sociobiol 3:203–243. doi: 10.1007/Bf00296311 CrossRefGoogle Scholar
  76. Stevens DJ (2004) Pupal development temperature alters adult phenotype in the speckled wood butterfly, Pararge aegeria. J Therm Biol 29:205–210. doi: 10.1016/j.jtherbio.2004.02.005 CrossRefGoogle Scholar
  77. Tovee MJ (1995) Ultra-violet photoreceptors in the animal kingdom: their distribution and function. Trends Ecol Evol 10:455–460. doi: 10.1016/S0169-5347(00)89179-x PubMedCrossRefGoogle Scholar
  78. Tremmel M, Müller C (2013) Insect personality depends on environmental conditions. Behav Ecol 24:386–392CrossRefGoogle Scholar
  79. Wijnen B, Leertouwer HL, Stavenga DG (2007) Colors and pterin pigmentation of pierid butterfly wings. J Insect Physiol 53:1206–1217. doi: 10.1016/j.jinsphys.2007.06.016 PubMedCrossRefGoogle Scholar
  80. Williams P (2007) The distribution of bumblebee colour patterns worldwide: possible significance for thermoregulation, crypsis, and warning mimicry. Biol J Linn Soc 92:97–118. doi: 10.1111/j.1095-8312.2007.00878.x CrossRefGoogle Scholar
  81. Wilts BD, Pirih P, Stavenga DG (2011) Spectral reflectance properties of iridescent pierid butterfly wings. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 197:693–702. doi: 10.1007/s00359-011-0632-y PubMedCentralPubMedCrossRefGoogle Scholar
  82. Wright AA (1972) The influence of ultraviolet radiation on the pigeon’s color discrimination. J Exp Anal Behav 17:325–337. doi: 10.1901/jeab.1972.17-325 PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Pavel Pecháček
    • 1
  • David Stella
    • 1
  • Petr Keil
    • 2
    • 3
  • Karel Kleisner
    • 1
  1. 1.Department of Philosophy and History of Science, Faculty of ScienceCharles University in PraguePraha 2Czech Republic
  2. 2.Department of Ecology and Evolutionary BiologyYale UniversityNew HavenUSA
  3. 3.Center for Theoretical StudyCharles University and the Academy of Sciences of the Czech RepublicPraha 1Czech Republic

Personalised recommendations