Juvenile morphology in baleen whale phylogeny


Phylogenetic reconstructions are sensitive to the influence of ontogeny on morphology. Here, we use foetal/neonatal specimens of known species of living baleen whales (Cetacea: Mysticeti) to show how juvenile morphology of extant species affects phylogenetic placement of the species. In one clade (sei whale, Balaenopteridae), the juvenile is distant from the usual phylogenetic position of adults, but in the other clade (pygmy right whale, Cetotheriidae), the juvenile is close to the adult. Different heterochronic processes at work in the studied species have different influences on juvenile morphology and on phylogenetic placement. This study helps to understand the relationship between evolutionary processes and phylogenetic patterns in baleen whale evolution and, more in general, between phylogeny and ontogeny; likewise, this study provides a proxy how to interpret the phylogeny when fossils that are immature individuals are included. Juvenile individuals in the peramorphic acceleration clades would produce misleading phylogenies, whereas juvenile individuals in the paedomorphic neoteny clades should still provide reliable phylogenetic signals.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2


  1. Bisconti M (2014) Anatomy of a new cetotheriid genus and species from the Miocene of Herentals, Belgium, and the phylogenetic and palaeobiogeographical relationships of Cetotheriidae s.s. (Mammalia, Cetacea, Mysticeti). J Syst Palaeontol: 1–19 doi:10.1080/14772019.2014.890136

  2. Bisconti M, Lambert O, Bosselaers M (2013) Taxonomic revision of Isocetus depauwi (Mammalia, Cetacea, Mysticeti) and the phylogenetic relationships of archaic ‘cetothere’ mysticetes. Palaeontology 56:95–127

    Article  Google Scholar 

  3. Campione NE, Brink KS, Freedman EA, McGarrity CT, Evans DC (2013) ‘Glishades ericksoni’, an indeterminate juvenile hadrosaurid from the two medicine formation of Montana: implications for hadrosauroid diversity in the latest cretaceous (Campanian-maastrichtian) of western North America. Palaeobiodiversity Palaeoenvironments 93:65–75

    Google Scholar 

  4. Darwin C (1859) On the origin of species: by means of natural selections or the preservation of favoured races in the struggle for life. John Murray, London

    Google Scholar 

  5. de Muizon C (1993) Walrus-like feeding adaptation in a new cetacean from the Pliocene of Peru. Nature 365:745–748

    Article  Google Scholar 

  6. Deméré TA, McGowen MR, Berta A, Gatesy J (2008) Morphological and molecular evidence for a stepwise evolutionary transition from teeth to baleen in mysticete whales. Syst Biol 57:15–37

    PubMed  Article  Google Scholar 

  7. El Adli JJ, Deméré TA, Boessenecker RW (2014) Herpetocetus morrowi (Cetacea: Mysticeti), a new species of diminutive baleen whale from the upper Pliocene (Piacenzian) of California, USA, with observations on the evolution and relationships of the Cetotheriidae. Zool J Linnean Soc 170:400–466

    Article  Google Scholar 

  8. Eldredge N, Cracraft J (1980) Phylogenetic patterns and the evolutionary process: method and theory in comparative biology. Columbia University, New York

    Google Scholar 

  9. Eldredge N, Gould SJ (1972) Punctuated equilibria: an alternative to phyletic gradualism. In: Schopf TJM (ed) Models in Paleobiology. Freeman, Cooper & Company, California, pp 82–115

    Google Scholar 

  10. Fitzgerald EMG (2006) A bizarre new toothed mysticete (Cetacea) from Australia and the early evolution of baleen whales. Proc R Soc B 273:2955–2963

    PubMed Central  PubMed  Article  Google Scholar 

  11. Fitzgerald EMG (2010) The morphology and systematics of Mammalodon colliveri (Cetacea: Mysticeti), a toothed mysticete from the Oligocene of Australia. Zool J Linnean Soc 158:367–476

    Article  Google Scholar 

  12. Fitzgerald EMG (2012) Archaeocete-like jaws in a baleen whale. Biol Lett 8:94–96

    PubMed Central  PubMed  Article  Google Scholar 

  13. Fordyce RE, Marx FG (2013) The pygmy right whale Caperea marginata: the last of the cetotheres. Proc R Soc B 280:1–6. doi:10.1098/rspb.2012.2645

  14. Goloboff P, Farris J, Nixon K (2003) TNT: Tree Analysis Using New Technology. Program and documentation, available from the authors, and from www.zmuc.dk/public/phylogeny. Accessed 8 May 2013

  15. Goloboff PA, Farris JS, Nixon KC (2008) TNT, a free program for phylogenetic analysis. Cladistics 24:774–786

    Article  Google Scholar 

  16. Gould SJ (1977) Ontogeny and phylogeny. Belknap press of Harvard University, Cambridge

    Google Scholar 

  17. Hall BK (1994) Homology: the hierarchical basis of comparative biology. Academic

  18. Longrich NR, Field DJ (2012) Torosaurus is not triceratops: ontogeny in chasmosaurine ceratopsids as a case study in dinosaur taxonomy. PLoS ONE 7:e32623

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  19. Marx FG (2011) The more the merrier? A large cladistic analysis of mysticetes, and comments on the transition from teeth to baleen. J Mamm Evol 18:77–100

    Article  Google Scholar 

  20. Marx FG, Buono MR, Fordyce RE, Boessenecker RW (2013) Juvenile morphology: a clue to the origins of the most mysterious of mysticetes? Naturwissenschaften 100:257–261

    CAS  PubMed  Article  Google Scholar 

  21. McKinney ML (1988) Heterochrony in evolution. Springer

  22. McNamara K (1995) Evolutionary change and heterochrony. Wiley

  23. Mead JG, Fordyce RE (2009) The therian skull: a lexicon with emphasis on the odontocetes. Smithsonian Contributions to Zoology:1–248

  24. Mooers AO, Heard SB (1997) Inferring evolutionary process from phylogenetic tree shape. Q Rev Biol 72:31–54

    Article  Google Scholar 

  25. Nee S, May RM (1997) Extinction and the loss of evolutionary history. Science 278:692–694

    CAS  PubMed  Article  Google Scholar 

  26. Pagel M (1997) Inferring evolutionary processes from phylogenies. Zool Scr 26:331–348

    Article  Google Scholar 

  27. Prieto-Marquez A (2010) Glishades ericksoni, a new hadrosauroid (Dinosauria: Ornithopoda) from the Late Cretaceous of North America. Zootaxa 2452:1–17

    Google Scholar 

  28. Scannella JB, Horner JR (2010) Torosaurus Marsh, 1891, is Triceratops Marsh, 1889 (Ceratopsidae: Chasmosaurinae): synonymy through ontogeny. J Vertebr Paleontol 30:1157–1168

    Article  Google Scholar 

  29. Stanley SM (1979) Macroevolution, pattern and process. The Johns Hopkins University, San Francisco

    Google Scholar 

  30. Steeman ME (2007) Cladistic analysis and a revised classification of fossil and recent mysticetes. Zool J Linnean Soc 150:875–894

    Article  Google Scholar 

  31. Tsai CH, Fordyce RE (2014) Disparate heterochronic processes in baleen whale evolution. Evol Biol 41:299–307

    Article  Google Scholar 

  32. Wiens J, Bonett R, Chippindale P (2005) Ontogeny discombobulates phylogeny: paedomorphosis and higher-level salamander relationships. Syst Biol 54:91–110

    PubMed  Article  Google Scholar 

Download references


For access to collections and allowing photography during Tsai’s and/or Fordyce’s visits, we thank Tadasu Yamada, Naoki Kohno, Yuko Tajima (National Museum of Nature and Science, Tokyo, Japan), Catherine Kemper, David Stemmer, Neville Pledge, Mary-Anne Binnie (South Australian Museum, Adelaide, Australia), James Mead, Charles Potter, John Ososky, Nicholas Pyenson, David Bohaska (National Museum of Natural History, Smithsonian Institution, Washington DC, USA), Jim Dines, David Janiger (Natural History Museum, of Los Angeles County, USA), Anton van Helden (National Museum of New Zealand, Wellington, New Zealand), and Erich Fitzgerald, Karen Roberts (Museum Victoria, Melbourne, Australia). We thank Gabriel Aguirre, Felix Marx, and Erich Fitzgerald for the review and comments; Robert Boessenecker and Yoshihiro Tanaka for the discussion. We thank Olivier Lambert, Erich Fitzgerald, and an anonymous reviewer for their constructive comments. James Mead (Washington DC), Erich Fitzgerald, Karen Roberts (Melbourne), and Felix Marx, Ikerne Aguirre, Aiko Fukumoto (Japan) kindly accommodated Tsai during various visits. This study is part of Tsai’s Ph.D. thesis supported by the University of Otago Doctoral Scholarship.

Author information



Corresponding author

Correspondence to Cheng-Hsiu Tsai.

Additional information

Communicated by: Sven Thatje

Electronic supplementary material

Below is the link to the electronic supplementary material.


(DOC 8657 kb)


(DOC 1058 kb)


(DOC 73 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tsai, CH., Fordyce, R.E. Juvenile morphology in baleen whale phylogeny. Naturwissenschaften 101, 765–769 (2014). https://doi.org/10.1007/s00114-014-1216-9

Download citation


  • Evolutionary process
  • Phylogenetic pattern
  • Ontogeny
  • Mysticeti
  • Heterochrony