Skip to main content
Log in

Evidence for early intracellular accumulation of volatile compounds during spadix development in Arum italicum L. and preliminary data on some tropical Aroids

  • Original Paper
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

Staining and histochemistry of volatile organic compounds (VOCs) were performed at different inflorescence developmental stages on nine aroid species; one temperate, Arum italicum and eight tropical from the genera Caladium, Dieffenbachia and Philodendron. Moreover, a qualitative and quantitative analysis of VOCs constituting the scent of A. italicum, depending on the stage of development of inflorescences was also conducted. In all nine species, vesicles were observed in the conical cells of either the appendix or the stamens (thecae) and the staminodes. VOCs were localised in intracellular vesicles from the early stages of inflorescence development until their release during receptivity of gynoecium. This localisation was observed by the increase of both number and diameter of the vesicles during 1 week before receptivity. Afterwards, vesicles were fewer and smaller but rarely absent. In A. italicum, staining and gas chromatography analyses confirmed that the vesicles contained terpenes. The quantitatively most important ones were the sesquiterpenes, but monoterpenes were not negligible. Indeed, the quantities of terpenes matched the vesicles’ size evolution during 1 week. Furthermore, VOCs from different biosynthetic pathways (sesquiterpenes and alkanes) were at their maximum quantity 2 days before gynoecium receptivity (sesquiterpenes and alkanes) or during receptivity (isobutylamine, monoterpenes, skatole and p-cresol). VOCs seemed to be emitted during gynoecium receptivity and/or during thermogenesis, and FADs are accumulated after thermogenesis in the spadix. These complex dynamics of the different VOCs could indicate specialisation of some VOCs and cell machinery to attract pollinators on the one hand and to repulse/protect against phytophagous organisms and pathogens after pollination on the other hand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ANOVA:

Univariate analysis of variance

GC-MS:

Gas chromatography linked to mass spectrometry

HRMAS:

High-resolution magic angle spinning

NaDi:

1-Naphtol and N,N-dimethyl-p-phenylenediamine

NMR:

Nuclear magnetic resonance

NPMANOVA:

Non-parametric multivariate analysis of variance

OPLS-DA:

Orthogonal projections to latent structures discriminant analysis

VOC:

Volatile organic compound

References

  • Albre J, Quilichini A, Gibernau M (2003) Pollination ecology of Arum italicum (Araceae). Bot J Linn Soc 141:205–214

    Article  Google Scholar 

  • Angioy A-M, Stensmyr C, Urru I, Puliafito M, Collu I, Hansson BS (2004) Function of the heater: the dead horse arum revisited. Proc R Soc London B 271:S13–S15

    Article  Google Scholar 

  • Barabé D, Gibernau M, Forest F (2002) Zonal thermogenetic dynamics of two Philodendron species from two different subgenera (Araceae). Bot J Linn Soc 139:79–86

    Article  Google Scholar 

  • Bröderbauer D, Weber A, Diaz A (2013) The design of trapping devices in pollination traps of the genus Arum (Araceae) is related to insect type. Bot J Linn Soc 172:385–397

    Article  Google Scholar 

  • Caissard J-C, Joly C, Bergougnoux V, Hugueney P, Mauriat M, Baudino S (2004a) Secretion mechanisms of volatile organic compounds in specialized cells of aromatic plants. Rec Res Dev Cell Biol 2:1–15

    CAS  Google Scholar 

  • Caissard J-C, Meekkijjiroenroj A, Baudino S, Anstett MC (2004b) Production and emission of pollinator attractant on leaves of Chamaerops humilis (Arecaceae). Am J Bot 91:1190–1199

    Article  PubMed  Google Scholar 

  • Chartier M, Pélozuelo P, Gibernau M (2011) Do floral odor profiles geographically vary with the degree of specificity for pollinators? Investigation in two sapromyophilous Arum species (Araceae). Ann Soc Entomol Fr 47:71–77

    Google Scholar 

  • Chartier M, Pélozuelo P, Buatois B, Bessière J-M, Gibernau M (2013) Geographic variations of odour and pollinators, and test for local adaptation by reciprocal transplant of two European Arum species (Araceae). Funct Ecol 27:1367–1381

    Article  Google Scholar 

  • Chartier M, Gibernau M, Renner SS (2014) The evolution of pollinator/plant interaction types in the Araceae. Evolution 68:1533–1543

  • David R, Carde J-P (1964) Coloration différentielle des inclusions lipidiques et terpéniques des pseudophylles du Pin maritime au moyen du réactif nadi. CR Acad Sci Paris 258:1338–1340

    CAS  Google Scholar 

  • Diaz A, Kite GC (2002) A comparison of the pollination ecology of Arum maculatum and A. italicum in England. Watsonia 24:171–181

    Google Scholar 

  • Diaz A, Kite GC (2006) Why be a rewarding trap? The evolution of floral rewards in Arum (Araceae), a genus characterized by saprophilous pollination systems. Biol J Linn Soc 88:257–268

    Article  Google Scholar 

  • Dötterl S, David A, Boland W, Silberbauer-Gottsberger I, Gottsberger G (2012) Evidence for behavioral attractiveness of methoxylated aromatics in a dynastid scarab beetle-pollinated Araceae. J Chem Ecol 38:1539–1543

    Article  PubMed  Google Scholar 

  • Effmert U, Buss D, Rohrbeck D, Piechulla B (2006) Localization of the synthesis and emission of scent compounds within the flower. In: Dudareva N, Pichersky P (eds) Biology of floral scent. Taylor and Francis Group, Boca Raton, pp 105–124

    Google Scholar 

  • Fahn A (1988) Secretory tissues in vascular plants. New Phytol 108:229–257

    Article  Google Scholar 

  • Flanagan KA, Webb W, Stowers L (2011) Analysis of male pheromones that accelerate female reproductive organ development. PLoS One 6:e16660

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Frey M, Chomet E, Glawischnig E, Stettner C, Grün S, Winklmair A, Eisenreich W, Bacher A, Meeley RB, Briggs SP, Simcox K, Gierl A (1997) Analysis of a chemical plant defense mechanism in grasses. Science 277:696–699

    Article  CAS  PubMed  Google Scholar 

  • Garg RP, Qian XL, Alemany LB, Moran S, Parry RJ (2008) Investigations of valanimycin biosynthesis elucidation of the role of seryl t-RNA. Proc Natl Acad Sci U S A 105:6543–6547

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gibernau M (2003) Pollinators and visitors of Aroid inflorescences. Aroideana 26:66–83

    Google Scholar 

  • Gibernau M (2011) Pollinators and visitors of aroid inflorescences: an addendum. Aroideana 34:70–83

    Google Scholar 

  • Gibernau M, Barabé D, Cerdan P, Dejean A (1999) Beetle pollination of Philodendron solimoesense (Araceae) in French Guiana. Int J Plant Sci 160:1135–1143

    Article  PubMed  Google Scholar 

  • Gibernau M, Macquart D, Przetak G (2004a) Pollination in the genus Arum, a review. Aroideana 27:148–166

    Google Scholar 

  • Gibernau M, Favre C, Talou T, Raynaud C (2004b) Floral odour of Arum italicum. Aroideana 27:142–147

    Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:1–9

    Google Scholar 

  • Hudak KA, Thompson JE (1997) Subcellular localization of secondary lipid metabolites including fragrance volatiles in carnation petals. Plant Physiol 114:705–713

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hudak KA, Madey E, Hong Y, Su L, Thompson JE (2000) Immunopurification of H+-ATPase-containing lipid-protein particles from the cytosol of carnation petals. Physiol Plant 109:304–312

    Article  CAS  Google Scholar 

  • Ibanez S, Dötterl S, Anstett M-C, Baudino S, Caissard J-C, Gallet C, Després L (2010) The role of volatile organic compounds, morphology and pigments of globeflowers in the attraction of their specific pollinating flies. New Phytol 188:451–463

    Article  CAS  PubMed  Google Scholar 

  • Kite GC, Hetterscheid WLA, Lewis MJ, Boyce PC, Ollerton J, Cocklin E, Diaz A, Simmonds MSJ (1998) Inflorescence odours and pollinators of Arum and Amorphophallus (Araceae). In: Owens SJ, Rudall PJ (eds) Reproductive biology. Royal Botanical Gardens, Kew, pp 295–315

    Google Scholar 

  • Knudsen JT, Tollsten L, Bergström LG (1993) Floral scents—a checklist of volatile compounds isolated by head-space techniques. Phytochemistry 33:253–280

    Article  CAS  Google Scholar 

  • Knudsen JT, Eriksson R, Gershenzon J, Ståhl B (2006) Diversity and distribution of floral scent. Bot Rev 72:1–120

    Article  Google Scholar 

  • Leport L, Larher F (1991) La proline; marqueur de fertilité et précurseur d’amines chez Arum maculatum L. CR Acad Sci Paris 312:567–572

    CAS  Google Scholar 

  • Maia ACD, Schlindwein C (2006) Caladium bicolor (Araceae) and Cyclocephala celata (Coleoptera, Dynastinae): a well-established pollination system in the Northern Atlantic rainforest of Pernambuco, Brazil. Plant Biol 8:529–534

    Article  CAS  PubMed  Google Scholar 

  • Maia ACD, Schlindwein C, do Amaral Ferraz Navarro DM, Gibernau M (2010) Pollination of Philodendron acutatum (Araceae) in the Atlantic Forest of northeastern Brazil: a single scarab beetle species guarantees high fruit set. Int J Plant Sci 171:740–748

    Article  Google Scholar 

  • Maia ACD, Dötterl S, Kaiser R, Silberbauer-Gottsberger I, Teichert H, Gibernau M, do Amaral Ferraz Navarro DM, Schlindwein C, Gottsberger G (2012) The key role of 4-methyl-5-vinylthiazole in the attraction of scarab beetle pollinators: a unique olfactory floral signal shared by Annonaceae and Araceae. J Chem Ecol 38:1072–1080

    CAS  PubMed  Google Scholar 

  • Maia ACD, Gibernau M, Dötterl S, do Amaral Ferraz Navarro DM, Seifert K, Müller T, Schlindwein C (2013) The floral scent of Taccarum ulei (Araceae): attraction of scarab beetle pollinators to an unusual aliphatic acyloin. Phytochemistry 93:71–78

    Article  CAS  PubMed  Google Scholar 

  • Marinho CR, Souza CD, Barros TC, Teixeira SP (2014) Scent glands in legume flowers. Plant Biol 16:215–226

    Article  Google Scholar 

  • Ni J-Q, Robarge WP, Xiao C, Heber AJ (2012) Volatile organic compounds at swine facilities: a critical review. Chemosphere 89:769–788

    Article  CAS  PubMed  Google Scholar 

  • Nicolè F, Guitton Y, Courtois EA, Moja S, Legendre L, Hossaert-McKey M (2012) MSeasy: unsupervised and untargeted GC-MS data processing. Bioinformatics 28:2278–2280

    Article  PubMed  Google Scholar 

  • Partridge M, Murphy DJ (2009) Roles of a membrane-bound caleosin and putative peroxygenase in biotic and abiotic stress responses in Arabidopsis. Plant Physiol Biochem 47:796–806

    Article  CAS  PubMed  Google Scholar 

  • Pereira J, Schlindwein C, Antonini Y, Maia ACD, Dötterl S, Martins C, Navarro DMDAF, Oliveira R (2014) Philodendron adamantinum (Araceae) lures its single cyclocephaline scarab pollinator with specific dominant floral scent volatiles. Biol J Linn Soc 111:679–691

    Article  Google Scholar 

  • Quilichini A, Macquart D, Barabé D, Albre J, Gibernau M (2010) Reproduction of the West Mediterranean endemic Arum pictum (Araceae) on Corsica. Plant Syst Evol 287:179–187

    Article  Google Scholar 

  • Robacker DC, Flath RA (1995) Attractants from Staphylococcus aureus cultures for Mexican fruit fly, Anastrepha ludens. J Chem Ecol 21:1861–1874

    Article  CAS  PubMed  Google Scholar 

  • Rosahl S, Feussner I (2005) Oxylipins. In: Murphy DJ (ed) Plant lipids, biology, utilisation, and manipulation. Blackwell, Oxford, pp 329–354

    Google Scholar 

  • Schwerdtfeger M, Gerlach G, Kaiser R (2002) Anthecology in the Neotropical genus Anthurium (Araceae): a preliminary report. Selbyana 23:258–267

    Google Scholar 

  • Seymour RS, Gibernau M (2008) Respiration of thermogenic inflorescences of Philodendron melinonii: natural pattern and responses to experimental temperatures. J Exp Bot 59:1353–1362

    Article  CAS  PubMed  Google Scholar 

  • Shimada TL, Takano Y, Shimada T, Fujiwara M, Fukao Y, Mori M, Okazaki Y, Saito K, Sasaki R, Aoki K, Hara-Nishimura I (2013) Leaf oil body as a subcellular factory for the production of a phytoalexin in Arabidopsis. Plant Physiol 164:106–118

    Google Scholar 

  • Simon EW (1962) Valine decarboxylation in Arum spadix. J Exp Bot 13:1–4

    Article  CAS  Google Scholar 

  • Skubatz H, Kunkel DD (1999) Further study of the glandular tissue of the Sauromatum guttatum (Araceae) appendix. Am J Bot 86:841–854

    Article  CAS  PubMed  Google Scholar 

  • Skubatz H, Meeuse BJD, Bendich AJ (1989) Oxidation of proline and glutamate by mitochondria of Voodoo lily (Sauromatum guttatum). Plant Physiol 91:530–535

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Skubatz H, Kunkel DD, Patt JM, Howald WN, Hartman TG, Meeuse BJD (1995) Pathway of terpene excretion by the appendix of Sauromatum guttatum. Proc Natl Acad Sci U S A 92:10084–10088

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Skubatz H, Kunkel DD, Howald WN, Trenkle R, Mookherjee B (1996) The Sauromatum guttatum appendix as an osmophore: excretory pathways, composition of volatiles and attractiveness to insect. New Phytol 134:631–640

    Article  CAS  Google Scholar 

  • Smith BN, Meeuse JD (1966) Production of volatile amines and skatole at anthesis in some Arum Lily species. Plant Physiol 41:343–347

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stökl J, Strutz A, Dafni A, Svatos A, Doubsky J, Knaden M, Sachse S, Hansson BS, Stensmyr MC (2010) A deceptive pollination system targeting drosophilids through olfactory mimicry of yeast. Curr Biol 20:1–7

    Article  Google Scholar 

  • Trygg J, Wold S (2002) Orthogonal projections to latent structures (OPLS). J Chemom 16:119–128

    Article  CAS  Google Scholar 

  • Turner GW, Gershenzon J, Croteau R (2000) Development of peltate glandular trichomes of peppermint. Plant Physiol 124:665–679

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Urru I, Stensmyr MC, Hansson BS (2011) Pollination by brood-site deception. Phytochemistry 72:1655–1666

    Article  CAS  PubMed  Google Scholar 

  • Whitney HM, Bennett KMV, Dorling M, Sandbach L, Prince D, Chittka L, Glover BJ (2011) Why do so many petals have conical epidermal cells? Ann Bot 108:609–616

    Article  PubMed Central  PubMed  Google Scholar 

  • Young HJ (1986) Beetle pollination of Dieffenbachia longispatha (Araceae). Am J Bot 73:931–944

    Article  Google Scholar 

  • Zhuang X, Fiesselmann A, Zhao N, Chen H, Frey M, Chen F (2012) Biosynthesis and emission of insect herbivory-induced indole in rice. Phytochemistry 73:15–22

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a CNRS grant from the Amazonie II program APR—Biodiversité, écologie chimique et chimie des substances naturelles: Aracées and an Investissement d’Avenir grant of the French Agence Nationale de la Recherche (Centre d’Étude de la Biodiversité Amazonienne (CEBA) ANR-10-LABX-0025). Authors thank Frédéric Hache (Department of Foreign Languages, UJM) and the three anonymous referees for text revision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Gibernau.

Additional information

Communicated by: Sven Thatje

Electronic supplementary material

Below is the link to the electronic supplementary material.

Appendix S1

Optical micrographies of hand-made sections (PDF 763 kb)

Appendix S2

GC-MS analysis of VOCs (data matrix) (PDF 48 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leguet, A., Gibernau, M., Shintu, L. et al. Evidence for early intracellular accumulation of volatile compounds during spadix development in Arum italicum L. and preliminary data on some tropical Aroids. Naturwissenschaften 101, 623–635 (2014). https://doi.org/10.1007/s00114-014-1197-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-014-1197-8

Keywords

Navigation