Skip to main content
Log in

Development and growth in synanthropic species: plasticity and constraints

  • Original Paper
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

Urbanization poses serious extinction risks, yet some species thrive in urban environments. This may be due to a pronounced developmental plasticity in these taxa, since phenotypically, plastic organisms may better adjust to unpredictable urban food resources. We studied phenotypic plasticity in Nuctenea umbratica, a common European forest and urban vegetation spider. We subjected spiderlings to low (LF), medium (MF) and high (HF) food treatments and documented their growth and developmental trajectories into adulthood. Spiders from the three treatments had comparable numbers of instars and growth ratios, but differed in developmental periods. Longest developing LF spiders (♀ = 390, ♂ = 320 days) had the smallest adults, but MF (♀ = 300, ♂ = 240 days) and HF (♀ = 240, ♂ = 210 days) spiders reached comparable adult sizes through shorter development. While males and females had comparable instar numbers, females had longer development, higher growth ratios, adult sizes and mass; and while males adjusted their moulting to food availability, female moulting depended on specific mass, not food treatment. We discussed the patterns of Nuctenea sex-specific development and compared our results with published data on two other Holarctic urban colonizers (Larinioides sclopetarius, Zygiella x-notata) exhibiting high plasticity and fast generation turn-over. We conclude that despite relatively unconstrained developmental time in the laboratory enabling Nuctenea to achieve maximal mass and size—main female fitness proxies—their relatively fixed growth ratio and long generation turn-over may explain their lower success in urban environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ahmad T (2012) On the food preferences and application of Dyar’s rule to different hopper instars of Acrida exaltata Walker (Orthoptera: Acrididae). Zool Ecol 22:114–124

    Article  Google Scholar 

  • Andersson MB (1994) Sexual selection. Princeton University Press

  • Atkinson D, Sibly RM (1997) Why are organisms usually bigger in colder environments? Making sense of a life history puzzle. Trends Ecol Evol 12:235–239

    Article  CAS  PubMed  Google Scholar 

  • Blackledge TA, Kuntner M, Agnarsson I (2011) The form and function of spider orb webs: evolution from silk to ecosystems. In: Casas J (ed) Advances in Insect Physiology, vol 41. Academic Press, Burlington, pp 175–262

    Google Scholar 

  • Blanckenhorn WU (2005) Behavioral causes and consequences of sexual size dimorphism. Ethology 111:977–1016

    Article  Google Scholar 

  • Blanckenhorn WU, Dixon AF, Fairbairn DJ, Foellmer MW, Gibert P, van der Linde K, Wiklund C (2007) Proximate causes of Rensch’s rule: does sexual size dimorphism in arthropods result from sex differences in development time? Am Nat 169:245–257

    Article  PubMed  Google Scholar 

  • Bonduriansky R (2007) The evolution of condition-dependent sexual dimorphism. Am Nat 169:9–19

    Article  PubMed  Google Scholar 

  • Bucher R, Herrmann JD, Schüepp C, Herzog F, Entling MH (2010) Arthropod Colonisation of trees in fragmented landscapes depends on species traits. Open Ecol J 3:111–117

    Article  Google Scholar 

  • Buczkowski G (2010) Extreme life history plasticity and the evolution of invasive characteristics in a native ant. Biol Invasions 12:3343–3349

    Article  Google Scholar 

  • Christenson TE, Goist KC (1979) Costs and benefits of male–male competition in the orb weaving spider, Nephila clavipes. Behav Ecol Sociobiol 5:87–92

    Article  Google Scholar 

  • Cole BJ (1980) Growth ratios in holometabolous and hemimetabolous insects. Ann Entomol Soc Am 73:489–491

    Google Scholar 

  • Couret J, Dotson E, Benedict MQ (2014) Temperature, larval diet, and density effects on development rate and survival of Aedes aegypti (Diptera: Culicidae). PLoS One 9:e87468

    Article  PubMed Central  PubMed  Google Scholar 

  • Davidowitz G, Nijhout HF (2004) The physiological basis of reaction norms: the interaction among growth rate, the duration of growth and body size. Integr Comp Biol 44:443–449

    Article  PubMed  Google Scholar 

  • Dmitriew CM (2011) The evolution of growth trajectories: what limits growth rate? Biol Rev 86:97–116

    Article  PubMed  Google Scholar 

  • Dyar HG (1890) The number of molts of Lepidopterous Larvae. Psyche 5:420–422

    Article  Google Scholar 

  • Enders F (1976) Size, food-finding, and Dyar's constant. Environ Entomol 5:1–10

    Google Scholar 

  • Esperk T, Tammaru T, Nylin S (2007) Intraspecific variability in number of larval instars in insects. J Econ Entomol 100:627–645

    Article  PubMed  Google Scholar 

  • Fernández-Montraveta C, Moya-Laraño J (2007) Sex-specific plasticity of growth and maturation size in a spider: implications for sexual size dimorphism. J Evol Biol 20:1689–1699

    Article  PubMed  Google Scholar 

  • Flenner I, Richter O, Suhling F (2010) Rising temperature and development in dragonfly populations at different latitudes. Freshwater Biol 55:397–410

    Article  Google Scholar 

  • Foelix R (2010) Biology of spiders. Oxford University Press

  • Foellmer MW, Fairbairn DJ (2005) Competing dwarf males: sexual selection in an orb-weaving spider. J Evol Biol 18:629–641

    Article  CAS  PubMed  Google Scholar 

  • Gilles J, Lees R, Soliban S, Benedict M (2010) Density-dependent effects in experimental larval populations of Anopheles arabiensis (Diptera: Culicidae) Can Be Negative, Neutral, or Overcompensatory Depending on Density and Diet Levels. J Med Entomol 49:1001–1011

    Google Scholar 

  • Gimnig JE, Ombok M, Otieno S, Kaufman MG, Vulule JM et al (2002) Density-dependent development of Anopheles gambiae (Diptera: Culicidae) Larvae in Artificial Habitats. J Med Entomol 39:162–172

    Article  PubMed  Google Scholar 

  • Gotthard K (2000) Increased risk of predation as a cost of high growth rate: an experimental test in a butterfly. J Anim Ecol 69:896–902

    Article  Google Scholar 

  • Head G (1995) Selection on fecundity and variation in the degree of sexual size dimorphism among spider species (Class Araneae). Evolution 49:776–781

    Article  Google Scholar 

  • Heiling AM, Herberstein ME (1998) The web of Nuctenea sclopetaria (Araneae, Araneidae): relationship between body size and web design. J Arachnol 26:91–96

    Google Scholar 

  • Heiling AM, Herberstein ME (1999) The importance of being larger: intraspecific competition for prime web sites in orb-web spiders (Araneae, Araneidae). Behaviour 136:669–677

    Article  Google Scholar 

  • Herberstein ME, Elgar MA (1994) Foraging strategies of Eriophora transmarina and Nephila plumipes (Araneae: Araneoidea): Nocturnal and diurnal orb-weaving spiders. Aust J Ecol 19:451–457

    Article  Google Scholar 

  • Higgins LE (1992) Developing plasticity and fecundity in the orb-weaving spider Nephila clavipes. J Arachnol 20:94–106

    Google Scholar 

  • Higgins LE (1993) Constraints and plasticity in the development of juvenile Nephila clavipes in Mexico. J Arachnol 21(107–11):9

    Google Scholar 

  • Higgins LE, Rankin MA (1996) Different pathways in arthropod postembryonic development. Evolution 50:573–582

    Article  Google Scholar 

  • Higgins LE, Coddington JA, Goodnight C, Kuntner M (2011) Testing ecological and developmental hypotheses of mean and variation in adult size in nephilid orb-weaving spiders. Evol Ecol 25:1289–1306

    Article  Google Scholar 

  • Kearney MR, Briscoe NJ, Karoly DJ, Porter WP, Norgate M, Sunnucks P (2010) Early emergence in a butterfly causally linked to anthropogenic warming. Biol Lett 6:674–677

    Article  PubMed Central  PubMed  Google Scholar 

  • Kingsolver JG (2007) Variation in growth and instar number in field and laboratory Manduca sexta. Proc R Soc Lond Biol 274:977–981

    Article  Google Scholar 

  • Kingsolver JG, Huey RB (2008) Size, temperature, and fitness: three rules. Evol Ecol Res 10:251–268

    Google Scholar 

  • Kleinteich A, Schneider JM (2011) Developmental strategies in an invasive spider: constraints and plasticity. Ecol Entomol 36:82–93

    Article  Google Scholar 

  • Kralj-Fišer S, Schneider JM (2012) Individual behavioural consistency and plasticity in an urban spider. Anim Behav 84:197–204

    Article  Google Scholar 

  • Kralj-Fišer S, Gregorič M, Lokovšek T, Čelik T, Kuntner M (2013) A glimpse into the sexual biology of the “zygiellid” spider genus Leviellus. J Arachnol 41:387–391

    Article  Google Scholar 

  • Kuntner M, Zhang S, Gregorič M, Li D (2012) Nephila female gigantism attained through post-maturity molting. J Arachnol 40:344–346

    Article  Google Scholar 

  • Leborgne R, Pasquet A (1987) Influences of aggregative behaviour on space occupation in the spider Zygiella x-notata (Clerck). Behav Ecol Sociobiol 20:203–208

    Article  Google Scholar 

  • Li D, Jackson RR (1996) How temperature affects development and reproduction in spiders: a review. J Therm Biol 21:245–274

    Article  Google Scholar 

  • Li D, Jackson RR (1997) Influence of diet on survivorship and growth in Portia fimbriata, an araneophagic jumping spider (Araneae: Salticidae). Can J Zool 75:1652–1658

    Article  Google Scholar 

  • Liu Z, Xu B, Sun J (2014) Instar numbers, development, flight period, and fecundity of Dendroctonus valens (Coleoptera: Curculionidae: Scolytinae) in China. Ann Entomol Soc Am 107:152–157

    Article  Google Scholar 

  • Mayntz D, Toft S, Vollrath F (2003) Effects of prey quality and availability on the life history of a trap-building predator. Oikos 101:631–638

    Article  Google Scholar 

  • McKinney ML (2002) Urbanization, biodiversity, and conservation the impacts of urbanization on native species are poorly studied, but educating a highly urbanized human population about these impacts can greatly improve species conservation in all ecosystems. Bioscience 52:883–890

    Article  Google Scholar 

  • McKinney ML (2008) Effects of urbanization on species richness: a review of plants and animals. Urban Ecosyst 11:161–176

    Article  Google Scholar 

  • Miyashita K (1968) Growth and development of Lycosa T-insignita Boes. et Str. (Araneae: Lycosidae) under different feeding conditions. Appl Entomol Zool 3:81–88

    Google Scholar 

  • Nentwig W, Blick T, Gloor D, Hänggi A, Kropf C (2014) Araneae, spiders of Europe (v. 3). Available online at: http://www.araneae.unibe.ch/

  • Nijhout HF (1975) A threshold size for metamorphosis in the tobacco hornworm, Manduca sexta (L.). Biol Bull 149:214–225

    Article  CAS  PubMed  Google Scholar 

  • Nijhout HF (1979) Stretch-induced moulting in Oncopeltus fasciatus. J Insect Physiol 25:277–281

    Article  Google Scholar 

  • Nijhout HF, Willams CM (1974) Control of moulting and metamorphosis in the tobacco hornworm, Manduca sexta (L.): cessation of juvenile hormone secretion as a trigger for pupation. J Exp Biol 61:493–501

    CAS  PubMed  Google Scholar 

  • Przibram H, Megušar F (1912) Wachstumsmessungen an Sphodromantis bioculata Burm. Dev Genes Evol 34:680–741

    Google Scholar 

  • Robinson S, Partridge L (2001) Temperature and clinal variation in larval growth efficiency in Drosophila melanogaster. J Evol Biol 14:14–21

    Article  Google Scholar 

  • Roff DA (2002) Life history evolution. Sinauer, Sunderland

    Google Scholar 

  • Safranek L, Williams CM (1984) Critical weights for metamorphosis in the tobacco hornworm, Manduca sexta. Biol Bull 167:555–567

    Article  Google Scholar 

  • Shochat E, Warren PS, Faeth SH, McIntyre NE, Hope D (2006) From patterns to emerging processes in mechanistic urban ecology. Trends Ecol Evol 21:186–191

    Article  PubMed  Google Scholar 

  • Sol D (2003) Behavioural flexibility: a neglected issue in the ecological and evolutionary literature? In: Reader SM, Laland KN (eds) Animal innovation. Oxford University Press, Oxford, pp 63–82

    Chapter  Google Scholar 

  • Sol D, Lapiedra O, González-Lagos C (2013) Behavioural adjustments for a life in the city. Anim Behav 85:1101–1112

    Article  Google Scholar 

  • Spiller DA (1992) Numerical response to prey abundance by Zygiella x-notata (Araneae, Araneidae). J Arachnol 179–188

  • Stearns SC (1992) The evolution of life histories. Oxford University Press, London

    Google Scholar 

  • Stillwell RC, Davidowitz G (2010) Sex differences in phenotypic plasticity of a mechanism that controls body size: implications for sexual size dimorphism. Proc R Soc Lond Biol 277:3819–3826

    Article  Google Scholar 

  • Stillwell RC, Blanckenhorn WU, Teder T, Davidowitz G, Fox CW (2010) Sex differences in phenotypic plasticity affect variation in sexual size dimorphism in insects: from physiology to evolution. Ann Rev Entomol 55:227–245

    Article  CAS  Google Scholar 

  • Suter RB (1990) Determinants of fecundity in Frontinella pyramitela (Araneae, Linyphiidae). J Arachnol 18:263–269

    Google Scholar 

  • Van Buskirk J, Steiner UK (2009) The fitness costs of developmental canalization and plasticity. J Evol Biol 22:852–860

    Article  PubMed  Google Scholar 

  • Vollrath F (1980) Male body size and fitness in the web-building spider Nephila clavipes. Z Tierpsychol 53:61–78

    Google Scholar 

  • West-Eberhard MJ (2003) Developmental plasticity and evolution. Oxford University Press

  • Yeh PJ, Price TD (2004) Adaptive phenotypic plasticity and the successful colonization of a novel environment. Am Nat 164:531–542

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by the Slovenian Research Agency (grants Z1―4194 and P1―0236).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simona Kralj-Fišer.

Additional information

Communicated by: Sven Thatje

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kralj-Fišer, S., Čelik, T., Lokovšek, T. et al. Development and growth in synanthropic species: plasticity and constraints. Naturwissenschaften 101, 565–575 (2014). https://doi.org/10.1007/s00114-014-1194-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-014-1194-y

Keywords

Navigation