Advertisement

Naturwissenschaften

, Volume 101, Issue 5, pp 385–395 | Cite as

Phototaxis and polarotaxis hand in hand: night dispersal flight of aquatic insects distracted synergistically by light intensity and reflection polarization

  • Pál BodaEmail author
  • Gábor Horváth
  • György Kriska
  • Miklós Blahó
  • Zoltán Csabai
Original Paper

Abstract

Based on an earlier observation in the field, we hypothesized that light intensity and horizontally polarized reflected light may strongly influence the flight behaviour of night-active aquatic insects. We assumed that phototaxis and polarotaxis together have a more harmful effect on the dispersal flight of these insects than they would have separately. We tested this hypothesis in a multiple-choice field experiment using horizontal test surfaces laid on the ground. We offered simultaneously the following visual stimuli for aerial aquatic insects: (1) lamplit matte black canvas inducing phototaxis alone, (2) unlit shiny black plastic sheet eliciting polarotaxis alone, (3) lamplit shiny black plastic sheet inducing simultaneously phototaxis and polarotaxis, and (4) unlit matte black canvas as a visually unattractive control. The unlit matte black canvas trapped only a negligible number (13) of water insects. The sum (16,432) of the total numbers of water beetles and bugs captured on the lamplit matte black canvas (7,922) and the unlit shiny black plastic sheet (8,510) was much smaller than the total catch (29,682) caught on the lamplit shiny black plastic sheet. This provides experimental evidence for the synergistic interaction of phototaxis (elicited by the unpolarized direct lamplight) and polarotaxis (induced by the strongly and horizontally polarized plastic-reflected light) in the investigated aquatic insects. Thus, horizontally polarizing artificial lamplit surfaces can function as an effective ecological trap due to this synergism of optical cues, especially in the urban environment.

Keywords

Ecological trap Visual ecology Photopollution Polarized light pollution Phototaxis Polarotaxis Cue synergism 

Notes

Acknowledgments

We thank Judit Csaba, Judit Horváth, Bence Kovács, Erika Mihaliczku, Barbara Palombi, Renáta Tóth, Zsuzsanna Urbán and Vivien Viski (University of Debrecen, Hungary) for their extensive help during our field experiment. Gábor Horváth is grateful to the German Alexander von Humboldt Foundation for the 3-month research fellowship 3.3-UNG/1073032 STP from 1 June to 31 August 2013 in the University of Regensburg.

Supplementary material

114_2014_1166_MOESM1_ESM.docx (36 kb)
ESM 1 (DOCX 35.9 kb)

References

  1. Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46Google Scholar
  2. Aukema B, Rieger C (ed) (1995) Catalogue of the Heteroptera of the Palearctic Region. Enicocephalomorpha, Dipsocoromorpha, Nepomorpha, Gerromorpha and Leptopodomorpha. Vol. I, The Netherlands: The Netherlands Entomological Society, AmsterdamGoogle Scholar
  3. Benedek P, Jászai VE (1972) On the migration of Corixidae (Heteroptera) based on light trap data. Acta Zool Acad Sci Hung 19:1–9Google Scholar
  4. Bernáth B, Szedenics G, Molnár G, Kriska G, Horváth G (2001) Visual ecological impact of “shiny black anthropogenic products” on aquatic insects: oil reservoirs and plastic sheets as polarized traps for insects associated with water. Arch Nat Conservat Landsc Res 40:89–109Google Scholar
  5. Bernáth B, Szedenics G, Wildermuth H, Horváth G (2002) How can dragonflies discern bright and dark waters from a distance? The degree of polarization of reflected light as a possible cue for dragonfly habitat selection. Freshwater Biol 47:1707–1719CrossRefGoogle Scholar
  6. Bernáth B, Gál J, Horváth G (2004) Why is it worth flying at dusk for aquatic insects? Polarotactic water detection is easiest at low solar elevations. J Exp Biol 207:755–765PubMedCrossRefGoogle Scholar
  7. Bilton DT, Freeland JR, Okamura B (2001) Dispersal in freshwater invertebrates. Annu Rev Ecol Syst 32:159–181CrossRefGoogle Scholar
  8. Boda P, Csabai Z (2009) Seasonal and diel dispersal activity characteristics of Sigara lateralis (Leach, 1817) (Heteroptera: Corixidae) with special emphasis of the possible environmental factors and breeding state. Aquat Insect 31:301–314CrossRefGoogle Scholar
  9. Boda P, Csabai Z (2013) When do beetles and bugs fly? A unified scheme for describing seasonal flight behaviour of highly dispersing primary aquatic insects. Hydrobiologia 703:133–147CrossRefGoogle Scholar
  10. Choi H, Kim H, Kim JG (2009) Landscape analysis of the effects of artificial lighting around wetland habitats on the giant water bug Lethocerus deyrollei in Jeju Island. J Ecol Field Biol 32:83–86CrossRefGoogle Scholar
  11. Csabai Z (2000) Vízibogarak kishatározója I. (Coleoptera: Haliplidae, Hygrobiidae, Dytiscidae, Noteridae, Gyrinidae). [A guide for the identification of water beetles of Hungary, I. (in Hungarian with English abstract)]. Budapest, In: Vízi Természet- és Környezetvédelem 15., Környezetgazdálkodási IntézetGoogle Scholar
  12. Csabai Z (2003) Vízibogarak kishatározója III. (Kiegészítő kötet) [A guide for the identification of water beetles of Hungary, III. Supplement band (in Hungarian with English abstract)]. Budapest, In: Vízi Természet és Környezetvédelem 17., Környezetgazdálkodási IntézetGoogle Scholar
  13. Csabai Z, Gidó Zs, Szél Gy (2002) Vízibogarak kishatározója II. (Coleoptera: Georissidae, Spercheidae, Hydrochidae, Helophoridae, Hydrophilidae) [A guide for the identification of water beetles of Hungary, II. (in Hungarian with English abstract)]. Budapest, In: Vízi Természet- és Környezetvédelem 16., Környezetgazdálkodási IntézetGoogle Scholar
  14. Csabai Z, Boda P, Bernáth B, Kriska G, Horváth G (2006) A “polarization sun-dial” dictates the optimal time of day for dispersal by flying aquatic insects. Freshwater Biol 51:1341–1350CrossRefGoogle Scholar
  15. Csabai Z, Kálmán Z, Szivák I, Boda P (2012) Diel flight behaviour and dispersal patterns of aquatic Coleoptera and Heteroptera species with special emphasis on the importance of seasons. Naturwissenschaften 99:751–765PubMedCrossRefGoogle Scholar
  16. Frank KD (2006) Effects of artificial night light on moths. In: Rich C, Longcore T (eds) Ecological consequences of artificial night lighting. Island, Washington, pp 345–364Google Scholar
  17. Hammer O, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4(1):9Google Scholar
  18. Horváth G, Varjú D (1997) Polarization pattern of freshwater habitats recorded by video polarimetry in red, green and blue spectral ranges and its relevance for water detection by aquatic Insects. J Exp Biol 200:1155–1163Google Scholar
  19. Horváth G, Varjú D (2004) Polarized light in animal vision—polarization patterns in nature. Springer, HeidelbergCrossRefGoogle Scholar
  20. Horváth G, Zeil J (1996) Kuwait oil lakes as insect traps. Nature 379:303–304CrossRefGoogle Scholar
  21. Horváth G, Malik P, Kriska G, Wildermuth H (2007) Ecological traps for dragonflies in a cemetery: the attraction of Sympetrum species (Odonata: Libellulidae) by horizontally polarizing black gravestones. Freshwater Biol 52:1700–1709CrossRefGoogle Scholar
  22. Horváth G, Majer J, Horváth L, Szivák I, Kriska G (2008) Ventral polarization vision in tabanids: horseflies and deerflies (Diptera: Tabanidae) are attracted to horizontally polarized light. Naturwissenschaften 95:1093–1100PubMedCrossRefGoogle Scholar
  23. Horváth G, Kriska G, Malik P, Robertson B (2009) Polarized light pollution: a new kind of ecological photopollution. Front Ecol Environ 7:317–325CrossRefGoogle Scholar
  24. Horváth G, Blahó M, Egri Á, Kriska G, Seres I, Robertson B (2010a) Reducing the maladaptive attractiveness of solar panels to polarotactic insects. Conserv Biol 24:1644–1653PubMedCrossRefGoogle Scholar
  25. Horváth G, Kriska G, Malik P, Hegedüs R, Neumann L, Åkesson S, Robertson B (2010b) Asphalt surfaces as ecological traps for water-seeking polarotactic insects: how can the polarized light pollution of asphalt surfaces be reduced? Environmental Remediation Technologies, Regulations and Safety. Nova Science, New YorkGoogle Scholar
  26. Horváth G, Móra A, Bernáth B, Kriska G (2011) Polarotaxis in non-biting midges: female chironomids are attracted to horizontally polarized light. Physiol Behav 104:1010–1015PubMedCrossRefGoogle Scholar
  27. Jansson A (1986) The Corixidae (Heteroptera) of Europe and some adjacent regions. Acta Entomol Fenn 47:1–94Google Scholar
  28. Klecka J, Boukal DS (2011) Lazy ecologist’s guide to water beetle diversity: which sampling methods are the best? Ecol Indic 11:500–508CrossRefGoogle Scholar
  29. Kriska G, Horváth G, Andrikovics S (1998) Why do mayflies lay their eggs en masse on dry asphalt roads? Water-imitating polarized light reflected from asphalt attracts Ephemeroptera. J Exp Biol 201:2273–2286PubMedGoogle Scholar
  30. Kriska G, Csabai Z, Boda P, Malik P, Horváth G (2006) Why do red and dark-coloured cars lure aquatic insects? The attraction of water insects to car paintwork explained by reflection-polarisation signals. Proc R Soc Lond B 273:1667–1771CrossRefGoogle Scholar
  31. Kriska G, Malik P, Szivák I, Horváth G (2008) Glass buildings on river banks as “polarized light traps” for mass-swarming polarotactic caddis flies. Naturwissenschaften 95:461–467PubMedCrossRefGoogle Scholar
  32. Kriska G, Bernáth B, Farkas R, Horváth G (2009) Degrees of polarization of reflected light eliciting polarotaxis in dragonflies (Odonata), mayflies (Ephemeroptera) and tabanid flies (Tabanidae). J Insect Physiol 55:1167–1173PubMedCrossRefGoogle Scholar
  33. Lerner A, Meltser N, Sapir N, Erlick C, Shashar N, Broza M (2008) Reflected polarization guides chironomid females to oviposition sites. J Exp Biol 211:3536–3543PubMedCrossRefGoogle Scholar
  34. Longcore T, Rich C (2004) Ecological light pollution. Front Ecol Environ 2:191–198CrossRefGoogle Scholar
  35. Malik P, Hegedüs R, Kriska G, Horváth G (2008) Imaging polarimetry of glass buildings: why do vertical glass surfaces attract polarotactic insects? Appl Optics 47:4361–4374CrossRefGoogle Scholar
  36. Málnás K, Polyák L, Prill É, Hegedüs R, Kriska G, Dévai G, Horváth G, Lengyel S (2011) Bridges as optical barriers and population disruptors for the mayfly Palingenia longicauda: an overlooked threat to freshwater biodiversity? J Insect Conserv 15:823–832CrossRefGoogle Scholar
  37. Nowinszky L (2003) The handbook of light trapping. Savaria University Press, SzombathelyGoogle Scholar
  38. Nowinszky L (2004) Nocturnal illumination and night flying insects. Appl Ecol Environ Res 2:17–52Google Scholar
  39. Podani J (2000) Introduction to the exploration of multivariate biological data. Backhuys, LeidenGoogle Scholar
  40. Rich C, Longcore T (2006) Ecological consequences of artificial night lighting. Island, Washington, DCGoogle Scholar
  41. Scapini F, Mascagni A, Sforzi A (1993) Zonal recovery and orientation in respect to various stimuli of Heterocerus fenestratus Thunberg, 1784 (Coleoptera, Heteroceridae). J Insect Physiol 39:665–675CrossRefGoogle Scholar
  42. Schwind R (1991) Polarization vision in water insects and insects living on a moist substrate. J Comp Physiol A 169:531–540CrossRefGoogle Scholar
  43. Schwind R (1995) Spectral regions in which aquatic insects see reflected polarized light. J Comp Physiol A 177:439–448CrossRefGoogle Scholar
  44. Shashar N, Sabbah S, Aharoni N (2005) Migrating locusts can detect polarized reflections to avoid flying over the sea. Biology Letters 1:472–475PubMedCentralPubMedCrossRefGoogle Scholar
  45. Weigelhofer G, Weissmair W, Waringer J (1992) Night migration activity and the influence of meteorological parameters on light-trapping for aquatic Heteroptera. Zool Anz 229:209–218Google Scholar
  46. Wildermuth H (1998) Dragonflies recognize the water of rendezvous and oviposition sites by horizontally polarized light: a behavioural field test. Naturwissenschaften 85:297–302CrossRefGoogle Scholar
  47. Wildermuth H, Horváth G (2005) Visual deception of a male Libellula depressa by the shiny surface of a parked car (Odonata: Libellulidae). Int J Odonatol 8:97–105CrossRefGoogle Scholar
  48. Yee DA, Taylor S, Vamosi SM (2009) Beetle and plant density as cues initiating dispersal in two species of adult predaceous diving beetles. Oecologia 160:25–36PubMedCrossRefGoogle Scholar
  49. Zar J (2010) Biostatistical analysis. Prentice Hall Inc, Upper Saddle RiverGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Pál Boda
    • 1
    Email author
  • Gábor Horváth
    • 2
  • György Kriska
    • 3
    • 4
  • Miklós Blahó
    • 2
  • Zoltán Csabai
    • 5
  1. 1.Department of Tisza River ResearchMTA Centre for Ecological ResearchDebrecenHungary
  2. 2.Environmental Optics Laboratory, Department of Biological Physics, Physical InstituteEötvös UniversityBudapestHungary
  3. 3.Group for Methodology of Biology Teaching, Biological InstituteEötvös UniversityBudapestHungary
  4. 4.Danube Research InstituteMTA Centre for Ecological ResearchVácrátótHungary
  5. 5.Department of Hydrobiology, Institute of Biology, Faculty of SciencesUniversity of PécsPécsHungary

Personalised recommendations