Skip to main content
Log in

Amphimixis and the individual in evolving populations: does Weismann’s Doctrine apply to all, most or a few organisms?

  • Review
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

The German biologist August Weismann (1834–1914) proposed that amphimixis (sexual reproduction) creates variability for natural selection to act upon, and hence he became one of the founders of the Neo-Darwinian theory of biological evolution. He is perhaps best known for what is called “Weismann’s Doctrine” or “Weismann’s Barrier” (i.e. the irreversible separation of somatic and germ cell functionalities early during ontogeny in multicellular organisms). This concept provided an unassailable argument against “soft inheritance” sensu Lamarck and informed subsequent theorists that the only “individual” in the context of evolution is the mature, reproductive organism. Herein, we review representative model organisms whose embryology conforms to Weismann’s Doctrine (e.g. flies and mammals) and those that do not (e.g. freshwater hydroids and plants) based on this survey and the Five Kingdoms of Life scheme; we point out that most species (notably bacteria, fungi, protists and plants) are “non-Weismannian” in ways that make a canonical definition of the “individual” problematic if not impossible. We also review critical life history functional traits that allow us to create a matrix of all theoretically conceivable life cycles (for eukaryotic algae, embryophytes, fungi and animals), which permits us to establish where this scheme Weismann’s Doctrine holds true and where it does not. In addition, we argue that bacteria, the dominant organisms of the biosphere, exist in super-cellular biofilms but rarely as single (planktonic) microbes. Our analysis attempts to show that competition among genomic variants in cell lineages played a critical part in the evolution of multicellularity and life cycle diversity. This feature was largely ignored during the formulation of the synthetic theory of biological evolution and its subsequent elaborations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Bell G (1982) The masterpiece of nature: the evolution and genetics of sexuality. University of California Press, Berkeley

    Google Scholar 

  • Bell G (2008) Selection: the mechanism of evolution, 2nd edn. Chapman & Hall, New York

    Google Scholar 

  • Berger F, Twell D (2011) Germline specification and function in plants. Annu Rev Plant Biol 62:461–484

    Article  CAS  PubMed  Google Scholar 

  • Bolker JA (2014) Model species in evo-devo: a philosophical perspective. Evol Dev 16:49–56

    Article  PubMed  Google Scholar 

  • Bozic I, Nowak MA (2013) Unwanted evolution. Science 342:938–939

    Article  CAS  PubMed  Google Scholar 

  • Burt A (2000) Sex, recombination and the efficacy of selection: was Weismann right? Evolution 54:337–351

    CAS  PubMed  Google Scholar 

  • Buss LW (1983) Evolution, development, and the units of selection. Proc Natl Acad Sci U S A 80:1387–1391

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Buss LW (1987) The evolution of individuality. Princeton University Press, Princeton

    Google Scholar 

  • Celiker H, Gore J (2013) Cellular cooperation: insights from microbes. Trends Cell Biol 23:9–15

    Article  CAS  PubMed  Google Scholar 

  • Chow JC, Yen Z, Ziesche SM, Brown CJ (2005) Silencing of the mammalian X chromosome. Annu Rev Genomics Hum Genet 6:69–92

    Article  CAS  PubMed  Google Scholar 

  • Damuth J, Heisler IL (1988) Alternative formulations of multilevel selection. Biol Philos 3:407–430

    Article  Google Scholar 

  • Darwin C (1859) On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. John Murray, London

    Google Scholar 

  • Darwin C (1872) The origin of species by means of natural selection, or, the preservation of favoured races in the struggle for life, 6th edn. John Murray, London

    Google Scholar 

  • Davis RH (1960) Adaptation in pantothenate-requiring Neurospora. II. Nuclear competition during adaptation. Am J Bot 47:648–654

    Article  Google Scholar 

  • de la Cova C, Abril M, Bellosta P, Gallant P, Johnston LA (2004) Drosophila Myc regulates organ size by inducing cell competition. Cell 117:107–116

    Article  PubMed  Google Scholar 

  • de Lamarck J-B (1809) Philosophie Zoologique. Verdiere, Paris

    Google Scholar 

  • de Vries H (1901) Die Mutationstheorie. Band 1. Die Entstehung von Arten durch Mutation. Veit, Leipzig

  • Dejosez M, Hiroki U, Brandt VL, Zwake TP (2013) Safeguards for cell cooperation in mouse embryogenesis shown by genome-wide cheater screen. Science 341:1511–1514

    Article  CAS  PubMed  Google Scholar 

  • Dickson HG, Grant-Downton R (2009) Bridging the generation gap: flowering plant gametophytes and animal germlines reveal unexpected similarities. Biol Rev 84:589–615

    Article  Google Scholar 

  • Doerges L, Kutschera U (2014) Assembly and loss of the polar flagellum in plant-associated methylobacteria. Naturwissenschaften (in press)

  • Driesch H (1899) Philosophie des Organischen. Quelle und Meyer, Leipzig

    Google Scholar 

  • Fausto-Sterling A, Zheutlin LM, Brown PR (1974) Rates of RNA-synthesis during early embryogenesis in Drosophila melanogaster. Dev Biol 40:78–83

    Article  CAS  PubMed  Google Scholar 

  • Folse HJ Jr, Roughgarden J (2010) What is an individual organism? A multilevel selection perspective. Q Rev Biol 85:447–472

    Article  PubMed  Google Scholar 

  • Foster KR (2011) The sociobiology of molecular systems. Nat Rev Genet 12:193–203

    Article  CAS  PubMed  Google Scholar 

  • Fraune J, Alsheimer M, Volff J-N, Busch K, Fraune S, Bosch TCG, Benavente R (2012) Hydra meiosis reveals unexpected conservation of structural synaptonemal complex proteins across metazoans. Proc Natl Acad Sci U S A 109:16588–16593

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gaupp E (1917) August Weismann. Sein Leben und sein Werk. Verlag Gustav Fischer, Jena

    Google Scholar 

  • Gilbert SF (2006) Developmental biology, 8th edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Graham LEM, Wilcox LW (2000) The origin of alternation of generations in land plants: a focus on matrotrophy and hexose transport. Philos Trans R Soc B 355:757–767

    Article  CAS  Google Scholar 

  • Greenwald I (1998) LIN-1,2/Notch signaling: lessons from worms and flies. Genes Dev 12:1751–1762

    Article  CAS  PubMed  Google Scholar 

  • Haberlandt G (1904) Physiologische Pflanzenanatomie, 3rd edn. Verlag Wilhelm Engelmann, Leipzig

    Book  Google Scholar 

  • Haig D, Wilczek A (2006) Sexual conflict and the alternation of haploid and diploid generations. Philos Trans R Soc B 361:335–343

    Article  Google Scholar 

  • Hamilton WD (1964) The genetical evolution of social behavior. II. J Theor Biol 7:17–52

    Article  CAS  PubMed  Google Scholar 

  • Herron MD, Rashidi A, Sheldon DE, Driscoll WW (2013) Cellular differentiation and individuality in the ‘minor’ multicellular taxa. Biol Rev 88:844–861

    PubMed  Google Scholar 

  • Hertwig O (1894) Zeit- und Streitfragen der Biologie, vol 1. Verlag Gustav Fischer, Jena

    Google Scholar 

  • Holliday R, Grigg GW (1993) DNA methylation and mutation. Mutat Res 285:61–67

    Article  CAS  PubMed  Google Scholar 

  • Hoppe T, Kutschera U (2010) In the shadow of Darwin: Anton de Bary's origin of myxomycetology and a molecular phylogeny of the plasmodial slime molds. Theory Biosci 129:15–23

    Article  CAS  PubMed  Google Scholar 

  • James TY, Stenlid J, Olson A, Johannesson H (2008) Evolutionary significance of imbalanced nuclear ratios within heterokaryons of the basidiomycete fungus Heterobasidion parviporum. Evolution 62:2279–2296

    Article  CAS  PubMed  Google Scholar 

  • Jinks JL (1952) Heterokaryosis: a system of adaptation in wild fungi. Proc R Soc Lond B 140:83–99

    Article  CAS  PubMed  Google Scholar 

  • Kutschera U (2009a) Symbiogenesis, natural selection, and the dynamic Earth. Theory Biosci 128:191–203

    Article  CAS  PubMed  Google Scholar 

  • Kutschera U (2009b) Charles Darwin's Origin of Species, directional selection, and the evolutionary sciences today. Naturwissenschaften 96:1247–1263

    Article  CAS  PubMed  Google Scholar 

  • Kutschera U (2010) Sprengel–Darwin principle of cross fertilisation and the queen of problems in evolutionary biology. Ann Hist Phil Biol 15:159–172

    Google Scholar 

  • Kutschera U (2011) From the scala naturae to the symbiogenetic and dynamic tree of life. Biol Direct 6(33):1–20

    Google Scholar 

  • Kutschera U (2013) Evolution. In: Maloy S, Hughes K (eds) Brenner's Encyclopedia of genetics, vol 2. Elsevier, New York, pp 541–544

    Chapter  Google Scholar 

  • Kutschera U, Hossfeld U (2013) Alfred Russel Wallace (1823−1913): the forgotten co-founder of the Neo-Darwinian theory of biological evolution. Theory Biosci 132:207–214

    Article  PubMed  Google Scholar 

  • Kutschera U, Niklas KJ (2004) The modern theory of biological evolution: an expanded synthesis. Naturwissenschaften 91:255–276

    Article  CAS  PubMed  Google Scholar 

  • Kutschera U, Niklas KJ (2005) Endosymbiosis, cell evolution, and speciation. Theory Biosci 124:1–24

    Article  CAS  PubMed  Google Scholar 

  • Kutschera U, Niklas KJ (2008) Macroevolution via secondary endosymbiosis: a Neo-Goldschmidtian view of unicellular hopeful monsters and Darwin's primordial intermediate form. Theory Biosci 127:277–289

    Article  CAS  PubMed  Google Scholar 

  • Kutschera U, Niklas KJ (2014) Darwin-Wallace Demons: survival of the fastest in populations of duckweeds and the evolutionary history of an enigmatic group of angiosperms. Plant Biol (in press)

  • Lark KG (1967) Nonrandom segregation of sister chromatids in Vicia faba and Triticum boeoticum. Proc Natl Acad Sci U S A 58:352–359

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lark KG, Consigli RA, Minocha HC (1966) Segregation of sister chromatids in mammalian cells. Science 154:1202–1205

    Article  CAS  PubMed  Google Scholar 

  • Levit GS, Hoßfeld U (2006) The forgotten Old-Darwinian synthesis: the evolutionary theory of Ludwig H. Plate (1862–1937). NTM Internatl J Hist Ethics Natl Sci Technol Med 14:9–25

    Google Scholar 

  • Lynch M, Seyfert A, Eads B, Williams E (2008) Localization of the genetic determinants of meiosis suppression in Daphnia pulex. Genetics 180:317–327

    Article  PubMed Central  PubMed  Google Scholar 

  • Lyon MF (1961) Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature 190:372–373

    Article  CAS  PubMed  Google Scholar 

  • Mayr E (1982) The growth of biological thought. Diversity, evolution and inheritance. Belknap Press, Cambridge

    Google Scholar 

  • Michod RE, Nedelcu AM (2003) On the reorganization of fitness during evolutionary transitions in individuality. Integr Comp Biol 43:64–73

    Article  PubMed  Google Scholar 

  • Niklas KJ (2014a)  The evolutionary biology of plants.  University of Illinois, Chicago

  • Niklas KJ (2014b) The evolutionary-developmental origins of multicellularity. Am J Bot 101:6–25

    Article  CAS  PubMed  Google Scholar 

  • Niklas KJ, Kutschera U (2009) The evolutionary development of plant body plans. Funct Plant Biol 36:682–695

    Article  Google Scholar 

  • Niklas KJ, Kutschera U (2010) The evolution of the land plant life cycle. New Phytol 185:27–41

    Article  CAS  PubMed  Google Scholar 

  • Niklas KJ, Newman SA (2013) The origins of multicellular organisms. Evol Dev 15:41–52

    Article  PubMed  Google Scholar 

  • Niklas KJ, Cobb ED, Crawford DR (2013) The evo-devo of multinucleate cells, tissues, and organisms, and an alternative route to multicellularity. Evol Dev 9:466–474

    Article  Google Scholar 

  • Nowak MA (2006) Five rules for the evolution of cooperation. Science 314:1560–1563

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rainey PB, Kerr B (2010) Cheats as first propagules: a new hypothesis for the evolution of individuality during the transition from single cells to multicellularity. Bioessays 32:872–880

    Article  PubMed  Google Scholar 

  • Requejo RJ, Camacho J (2013) Scarcity may promote cooperation in populations of simple agents. Physical Rev E: 87 article 022819 (doi:10.1103/PhysRevE.87.022819)

  • Rosenberger RF, Kessel M (1968) Nonrandom sister chromatid segregation and nuclear migration in hyphae of Aspergillus nidulans. J Bacteriol 96:1208–1213

    CAS  PubMed Central  PubMed  Google Scholar 

  • Roux W (1883) Über die Bedeutung der Kerntheilungsfiguren. Verlag Wilhelm Engelmann, Leipzig

    Google Scholar 

  • Ruse M (2013) Charles Robert Darwin and Alfred Russel Wallace: their dispute over the units of selection. Theory Biosci 132:215–224

    Article  PubMed  Google Scholar 

  • Sagawa K, Yamagata H, Shiga T (2005) Exploring embryonic germ line development in the water flee, Daphnia magna, by zinc-finger-containing VASA as a marker. Gene Expr Patterns 5:669–678

    Article  CAS  PubMed  Google Scholar 

  • Santorelli LA, Thompson CRL, Christopher RL, Villegas E, Svetz J, Dinh C, Parikh A et al (2008) Facultative cheater mutants reveal the genetic complexity of cooperation in social amoebae. Nature 451:1107–1110

    Article  CAS  PubMed  Google Scholar 

  • Schauer S, Kutschera U (2008) Methylotrophic bacteria on the surfaces of field-grown sunflower plants: a biogeographic perspective. Theory Biosci 127:23–29

    Article  CAS  PubMed  Google Scholar 

  • Searles RB (1980) The strategy of the red algal life history. Am Nat 115:113–120

    Article  Google Scholar 

  • Sellis D, Callahan BJ, Petrov DA, Messer PW (2011) Heterozygote advantage as a natural consequence of adaption in diploids. Proc Natl Acad Sci U S A 108:20666–20671

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Simpson GL, Pittendrigh CS, Tiffney LH (1957) Life: an introduction to biology. Harcourt Brace Jovanovich, New York

    Google Scholar 

  • Solari CA, Kessler JO, Goldstein RE (2013) A general allometric and life-history model for cellular differentiation in the transition to multicellularity. Am Nat 181:369–380

    Article  PubMed  Google Scholar 

  • Stewart AJ, Plotkin JB (2013) From extortion to generosity, evolution in the iterated prisoner’s dilemma. Proc Natl Acad Sci U S A 110:15348–15353

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Trivers R, Burt A (1999) Kinship and genomic imprinting. In: R. Ohlsson (ed) Genomic imprinting: an interdisciplinary approach. Springer, Heidelberg, pp 1–21

  • Wallace AR (1889) Darwinism; an exposition of the theory of natural selection with some of its applications. Macmillan & Co., London

    Google Scholar 

  • Weismann A (1886) Die Bedeutung der sexuellen Fortpflanzung für die Selektions-Theorie. Verlag Gustav Fischer, Jena

    Book  Google Scholar 

  • Weismann A (1889) Essays on heredity and kindred biological problems [translated by Poulton EB, Schonland S, Shipley AE]. Clarendon Press, Oxford

    Book  Google Scholar 

  • Weismann A (1892) Das Keimplasma. Eine Theorie der Vererbung. Verlag Gustav Fischer, Jena

    Google Scholar 

  • Weismann A (1908) Eine hydrobiologische Einleitung. Int Rev Ges Hydrobiol Hydrogeogr 1:1–9

    Article  Google Scholar 

  • Weismann A (1913) Vorträge über Deszendenztheorie, gehalten an der Universität Freiburg im Breisgau, Bd. 1 und 2. Verlag Gustav Fischer, Jena

  • Whipple C (2012) Defining the plant germ line—nature or nurture. Science 337:301–302

    Article  PubMed  Google Scholar 

  • Williams GC (1975) Sex and evolution. Princeton University Press, Princeton

    Google Scholar 

  • Wilson J (1999) Biological individuality, the identity and persistence of living entities. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Wilson R, Barker M (2013) The biological notion of individual. Stanford Encyclopedia of Philosophy, Stanford University (http://plato.stanford.edu/archives/spr2013/entries/biology-individual/)

  • Winther RG (2001) August Weismann on germplasm variation. J Hist Biol 34:517–555

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the referees for their constructive and insightful comments, and the Alexander von Humboldt Foundation (Bonn, Germany; AvH-Fellowship 2012 to U.K., Stanford, California, USA) and the College of Agriculture and Life Sciences, Cornell University (to K. J. N.) for financial support. We dedicate this paper to Prof. Leo Buss (Yale University) whose publications are essential reading for anyone interested in Weismann’s Doctrine and the evolution of individuality, particularly Buss (1983, 1987).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl J. Niklas.

Additional information

Communicated by: Sven Thatje

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niklas, K.J., Kutschera, U. Amphimixis and the individual in evolving populations: does Weismann’s Doctrine apply to all, most or a few organisms?. Naturwissenschaften 101, 357–372 (2014). https://doi.org/10.1007/s00114-014-1164-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-014-1164-4

Keywords

Navigation