Advertisement

Naturwissenschaften

, Volume 101, Issue 3, pp 261–264 | Cite as

Monogamy in large bee societies: a stingless paradox

  • Rodolfo Jaffé
  • Fabiana C. Pioker-Hara
  • Charles F. dos Santos
  • Leandro R. Santiago
  • Denise A. Alves
  • Astrid de M. P. Kleinert
  • Tiago M. Francoy
  • Maria C. Arias
  • Vera L. Imperatriz-Fonseca
Short Communication

Abstract

High genetic diversity is important for the functioning of large insect societies. Across the social Hymenoptera (ants, bees, and wasps), species with the largest colonies tend to have a high colony-level genetic diversity resulting from multiple queens (polygyny) or queens that mate with multiple males (polyandry). Here we studied the genetic structure of Trigona spinipes, a stingless bee species with colonies an order of magnitude larger than those of polyandrous honeybees. Genotypes of adult workers and pupae from 43 nests distributed across three Brazilian biomes showed that T. spinipes colonies are usually headed by one singly mated queen. Apart from revealing a notable exception from the general incidence of high genetic diversity in large insect societies, our results reinforce previous findings suggesting the absence of polyandry in stingless bees and provide evidence against the sperm limitation hypothesis for the evolution of polyandry. Stingless bee species with large colonies, such as T. spinipes, thus seem promising study models to unravel alternative mechanisms to increase genetic diversity within colonies or understand the adaptive value of low genetic diversity in large insect societies.

Keywords

Colony size Genetic diversity Polyandry Social insects Stingless bees 

Notes

Acknowledgments

We thank P.C. Fernandes for the help during bee collection, S. Coelho for the technical assistance in the lab, C. Giannini and three anonymous referees for their constructive criticism. Funding was provided by FAPESP 2012/13200-5 (RJ), 2010/19717-4 (DAA), and 2011/07857-9 (TMF). We also thank the BioComp at USP and the CETAPIS at UFERSA for the institutional support.

Supplementary material

114_2014_1149_MOESM1_ESM.docx (110 kb)
ESM 1 (DOCX 109 kb)
114_2014_1149_MOESM2_ESM.xlsx (79 kb)
ESM 2 (XLSX 78.8 kb)

References

  1. Alves DA, Menezes C, Imperatriz-Fonseca VL et al (2011) First discovery of a rare polygyne colony in the stingless bee Melipona quadrifasciata (Apidae, Meliponini). Apidologie 42:211–213CrossRefGoogle Scholar
  2. Biesmeijer JC, Slaa EJ (2006) The structure of eusocial bee assemblages in Brazil. Apidologie 37(2):240–258CrossRefGoogle Scholar
  3. Boomsma JJ, Ratnieks FLW (1996) Paternity in eusocial Hymenoptera. Philos Trans R Soc Lond Ser B Biol Sci 351(1342):947–975CrossRefGoogle Scholar
  4. Boomsma JJ, Kronauer DJC, Pedersen JS (2009) The evolution of social insect mating systems. In: Gadau J, Fewell J, Wilson EO (eds) Organization of insect societies: from genome to sociocomplexity. Harvard University Press, Cambridge, pp 3–25Google Scholar
  5. Bourke AFG (1999) Colony size, social complexity and reproductive conflict in social insects. J Evol Biol 12(2):245–257CrossRefGoogle Scholar
  6. Brito RM, Francisco FO, Domingues-Yamada AMT et al (2009) Characterization of microsatellite loci of Tetragonisca angustula (Hymenoptera, Apidae, Meliponini). Conserv Genet Resour 1(1):183–187CrossRefGoogle Scholar
  7. Garofalo CA (1980) Reproductive aspects and evolution of social behavior in bees (Hymenoptera, Apoidea). Braz J Genet III(2):139–152Google Scholar
  8. Hughes WOH, Oldroyd BP, Beekman M et al (2008a) Ancestral monogamy shows kin selection is key to the evolution of eusociality. Science 320(5880):1213–1216PubMedCrossRefGoogle Scholar
  9. Hughes WOH, Ratnieks FLW, Oldroyd BP (2008b) Multiple paternity or multiple queens: two routes to greater intracolonial genetic diversity in the eusocial Hymenoptera. J Evol Biol 21(4):1090–1095PubMedCrossRefGoogle Scholar
  10. Jaffé R, Garcia-Gonzalez F, den Boer SPA et al (2012) Patterns of paternity skew among polyandrous social insects: what can they tell us about the potential for sexual selection? Evolution 66(12):3778–3788PubMedCrossRefGoogle Scholar
  11. Kramer BH, Schaible R (2013) Colony size explains the lifespan differences between queens and workers in eusocial Hymenoptera. Biol J Linn Soc 109(3):710–724CrossRefGoogle Scholar
  12. Kraus FB, Neumann P, van Praagh J et al (2004) Sperm limitation and the evolution of extreme polyandry in honeybees (Apis mellifera L.). Behav Ecol Sociobiol 55(5):494–501CrossRefGoogle Scholar
  13. Matsuura K, Vargo EL, Kawatsu K et al (2009) Queen succession through asexual reproduction in termites. Science 323(5922):1687PubMedCrossRefGoogle Scholar
  14. Michener CD (1974) The social behavior of the bees: a comparative study. Belknap Press of Harvard University. Press, CambridgeGoogle Scholar
  15. Oldroyd BP, Fewell JH (2007) Genetic diversity promotes homeostasis in insect colonies. Trends Ecol Evol 22(8):408–413PubMedCrossRefGoogle Scholar
  16. Schmid-Hempel P (1998) Parasites in social insects. Princeton University Press, PrincetonGoogle Scholar
  17. Seeley TD, Tarpy DR (2007) Queen promiscuity lowers disease within honeybee colonies. Proc R Soc Lond B Biol Sci 274(1606):67–72CrossRefGoogle Scholar
  18. Smith CR, Toth AL, Suarez AV et al (2008) Genetic and genomic analyses of the division of labour in insect societies. Nat Rev Genet 9(10):735–748PubMedCrossRefGoogle Scholar
  19. Strassmann J (2001) The rarity of multiple mating by females in the social Hymenoptera. Insect Soc 48(1):1–13CrossRefGoogle Scholar
  20. Wenseleers T, Ratnieks FLW (2006) Comparative analysis of worker reproduction and policing in eusocial hymenoptera supports relatedness theory. Am Nat 168(6):E163–E179Google Scholar
  21. Wenseleers T, Alves DA, Francoy TM et al (2011) Intraspecific queen parasitism in a highly eusocial bee. Biol Lett 7(2):173–176PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Rodolfo Jaffé
    • 1
    • 2
  • Fabiana C. Pioker-Hara
    • 3
  • Charles F. dos Santos
    • 4
  • Leandro R. Santiago
    • 5
  • Denise A. Alves
    • 6
  • Astrid de M. P. Kleinert
    • 1
  • Tiago M. Francoy
    • 3
  • Maria C. Arias
    • 5
  • Vera L. Imperatriz-Fonseca
    • 1
    • 2
  1. 1.Departamento de EcologiaUniversidade de São PauloSão PauloBrazil
  2. 2.Departamento de Ciências AnimaisUniversidade Federal Rural do Semi-ÁridoMossoróBrazil
  3. 3.Escola de Artes, Ciências e HumanidadesUniversidade de São PauloSão PauloBrazil
  4. 4.Departamento de Biodiversidade e EcologiaPontifícia Universidade Católica do Rio Grande do SulPorto AlegreBrazil
  5. 5.Departamento de Genética e Biologia EvolutivaUniversidade de São PauloSão PauloBrazil
  6. 6.Departamento de Entomologia e Acarologia, Escola Superior de Agricultura “Luiz de Queiroz”Universidade de São PauloPiracicabaBrazil

Personalised recommendations