, Volume 100, Issue 12, pp 1149–1161

Geographical variation in parasitism shapes larval immune function in a phytophagous insect

  • Fanny Vogelweith
  • Morgane Dourneau
  • Denis  Thiéry
  • Yannick Moret
  • Jérôme Moreau
Original Paper


Two of the central goals of immunoecology are to understand natural variation in the immune system among populations and to identify those selection pressures that shape immune traits. Maintenance of the immune system can be costly, and both food quality and parasitism selection pressure are factors potentially driving immunocompetence. In tritrophic interactions involving phytophagous insects, host plants, and natural enemies, the immunocompetence of phytophagous insects is constrained by selective forces from both the host plants and the natural enemies. Here, we assessed the roles of host plants and natural enemies as selective pressures on immune variation among natural populations of Lobesia botrana. Our results showed marked geographical variation in immune defenses and parasitism among different natural populations. Larval immune functions were dependent of the host plant quality and were positively correlated to parasitism, suggesting that parasitoids select for greater investment into immunity in moth. Furthermore, investment in immune defense was negatively correlated with body size, suggesting that it is metabolically expensive. The findings emphasize the roles of host plants and parasitoids as selective forces shaping host immune functions in natural conditions. We argue that kinds of study are central to understanding natural variations in immune functions, and the selective forces beyond.


Grape varieties Immune defense Lobesia botrana Parasitism Tritrophic interactions 


  1. Adamo SA, Lovett MME (2011) Some like it hot: the effects of climate change on reproduction, immune function and disease resistance in the cricket Gryllus texensis. J Exp Biol 214(12):1997–2004. doi:10.1242/jeb.056531 PubMedCrossRefGoogle Scholar
  2. Ayres JS, Schneider DS (2009) The role of anorexia in resistance and tolerance to infections in Drosophila. Plos Biology 7 (7). doi:10.1371/journal.pbio.1000150
  3. Ayres JS, Schneider DS (2012) Tolerance of infections. In: Paul WE (ed) Annual review of immunology, Vol 30, vol 30. Annual Review of Immunology. pp 271–294. doi:10.1146/annurev-immunol-020711-075030
  4. Barnes AI, Siva-Jothy MT (2000) Density-dependent prophylaxis in the mealworm beetle Tenebrio molitor L (Coleoptera: Tenebrionidae): cuticular melanization is an indicator of investment in immunity. Proc R Soc B Biol Sci 267:177–182CrossRefGoogle Scholar
  5. Bryan-Walker K, Leung TLF, Poulin R (2007) Local adaptation of immunity against a trematode parasite in marine amphipod populations. Mar Biol 152(3):687–695. doi:10.1007/s00227-007-0725-x CrossRefGoogle Scholar
  6. Bukovinszky T, Poelman EH, Gols R, Prekatsakis G, Vet LEM, Harvey JA, Dicke M (2009) Consequences of constitutive and induced variation in plant nutritional quality for immune defence of a herbivore against parasitism. Oecologia 160(2):299–308. doi:10.1007/s00442-009-1308-y PubMedCrossRefGoogle Scholar
  7. Cerenius L, Soderhall K (2004) The prophenoloxidase-activating system in invertebrates. Immunol Rev 198:116–126. doi:10.1111/j.0105-2896.2004.00116.x PubMedCrossRefGoogle Scholar
  8. Coley PD, Bateman ML, Kursar TA (2006) The effects of plant quality on caterpillar growth and defense against natural enemies. Oikos 115(2):219–228CrossRefGoogle Scholar
  9. Corby-Harris V, Promislow DEL (2008) Host ecology shapes geographical variation for resistance to bacterial infection in Drosophila melanogaster. J Anim Ecol 77(4):768–776. doi:10.1111/j.1365-2656.2008.01399.x PubMedCentralPubMedCrossRefGoogle Scholar
  10. Cornet S, Biard C, Moret Y (2009) Variation in immune defence among populations of Gammarus pulex (Crustacea: Amphipoda). Oecologia 159:257–269PubMedCrossRefGoogle Scholar
  11. Cotter SC, Simpson SJ, Raubenheimer D, Wilson K (2011) Macronutrient balance mediates trade-offs between immune function and life history traits. Funct Ecol 25(1):186–198. doi:10.1111/j.1365-2435.2010.01766.x CrossRefGoogle Scholar
  12. Delbac L, Lecharpentier P, Thiéry D (2010) Larval instars determination for the European grapevine moth (Lepidoptera: Tortricidae) based on the frequency distribution of head capsule widths. Crop Prot 29:623–630CrossRefGoogle Scholar
  13. Fievet V, Lhomme P, Outreman Y (2008) Predation risk cues associated with killed conspecifics affect the behavior and reproduction of prey animals. Oikos 117(9):1380–1385. doi:10.1111/j.2008.0030-1299.16629.x CrossRefGoogle Scholar
  14. Gabel B, Thiery D (1996) Oviposition response of Lobesia botrana females to long-chain free fatty acids and esters from its eggs. J Chem Ecol 22(1):161–171. doi:10.1007/bf02040207 PubMedCrossRefGoogle Scholar
  15. Godin J, Maltais P, Gaudet S (2002) Head capsule width as an instar indicator for larvae of the cranberry fruitworm (Lepidoptera: Pyralidae) in southeastern New Brunswick. J Econ Entomol 95:1308–1313PubMedCrossRefGoogle Scholar
  16. Haine ER, Moret Y, Siva-Jothy MT, Rolff J (2008) Antimicrobial defense and persistent infection in insects. Science 322(5905):1257–1259. doi:10.1126/science.1165265 PubMedCrossRefGoogle Scholar
  17. Hairston NG, Smith FE, Slobodkin LB (1960) Community structure, population control, and competition. Am Nat 94(879):421–425. doi:10.1086/282146 CrossRefGoogle Scholar
  18. Hawkins BA, Cornell HV, Hochberg ME (1997) Predators, parasitoids and pathogens as mortality agents in phytophagous insect populations. Ecology 78:2145–2152CrossRefGoogle Scholar
  19. Hoffmann JA, Reichhart JM, Hetru C (1996) Innate immunity in higher insects. Curr Opin Immunol 8(1):8–13. doi:10.1016/s0952-7915(96)80098-7 PubMedCrossRefGoogle Scholar
  20. Ilmonen P, Taarna T, Hasselquist D (2000) Experimentally activated immune defence in female pied flycatchers results in reduced breeding success. Proc R Soc B Biol Sci 267(1444):665–670CrossRefGoogle Scholar
  21. Iwanaga S, Lee BL (2005) Recent advances in the innate immunity of invertebrate animals. J Biochem Mol Biol 38(2):128–150PubMedCrossRefGoogle Scholar
  22. Kalbe M, Kurtz J (2006) Local differences in immunocompetence reflect resistance of sticklebacks against the eye fluke Diplostomum pseudospathaceum. Parasitology 132:105–116. doi:10.1017/s0031182005008681 PubMedCrossRefGoogle Scholar
  23. Kapari L, Haukioja E, Rantala MJ, Ruuhola T (2006) Defoliating insect immune defense interacts with induced plant defense during a population outbreak. Ecology 87(2):291–296. doi:10.1890/05-0362 PubMedCrossRefGoogle Scholar
  24. Klemola T, Klemola N, Andersson T, Ruohomaki K (2007) Does immune function influence population fluctuations and level of parasitism in the cyclic geometrid moth? Popul Ecol 49(2):165–178. doi:10.1007/s10144-007-0035-7 CrossRefGoogle Scholar
  25. Kortet R, Rantala MJ, Hedrick A (2007) Boldness in anti-predator behaviour and immune defence in field crickets. Evol Ecol Res 9(1):185–197Google Scholar
  26. Kraaijeveld AR, Godfray HCJ (1997) Trade-off between parasitoid resistance and larval competitive ability in Drosophila melanogaster. Nature 389(6648):278–280PubMedCrossRefGoogle Scholar
  27. Kraaijeveld AR, Vanalphen JJM (1995) Foraging behavior and encapsulation ability of Drosphila melanogaster larvae: correlated polymorphisms? (Diptera, Drosophilidae). J Insect Behav 8(3):305–314CrossRefGoogle Scholar
  28. Lazzaro BP, Little TJ (2009) Immunity in a variable world. Phil Trans R Soc B Biol Sci 364(1513):15–26. doi:10.1098/rstb.2008.0141 CrossRefGoogle Scholar
  29. Linder JE, Owers KA, Promislow DEL (2008) The effects of temperature on host–pathogen interactions in D. melanogaster: who benefits? J Insect Physiol 54(1):297–308. doi:10.1016/j.jinsphys.2007.10.001 PubMedCentralPubMedCrossRefGoogle Scholar
  30. Lindstrom KM, Foufopoulos J, Parn H, Wikelski M (2004) Immunological investments reflect parasite abundance in island populations of Darwin's finches. Proc R Soc B Biol Sci 271(1547):1513–1519. doi:10.1098/rspb.2004.2752 CrossRefGoogle Scholar
  31. Medzhitov R, Schneider DS, Soares MP (2012) Disease tolerance as a defense strategy. Science 335(6071):936–941. doi:10.1126/science.1214935 PubMedCentralPubMedCrossRefGoogle Scholar
  32. Moran MD (2003) Arguments for rejecting the sequential Bonferroni in ecological studies. Oikos 100(2):403–405. doi:10.1034/j.1600-0706.2003.12010.x CrossRefGoogle Scholar
  33. Moreau J, Benrey B, Thiery D (2006a) Assessing larval food quality for phytophagous insects: are the facts as simple as they appear? Funct Ecol 20(4):592–600. doi:10.1111/j.1365-2435.2006.01145.x CrossRefGoogle Scholar
  34. Moreau J, Benrey B, Thiery D (2006b) Grape variety affects larval performance and also female reproductive performance of the European grapevine moth Lobesia botrana (Lepidoptera: Tortricidae). Bull Entomol Res 96:205–212PubMedCrossRefGoogle Scholar
  35. Moreau J, Villemant C, Benrey B, Thiery D (2010) Species diversity of larval parasitoids of the European grapevine moth (Lobesia botrana, Lepidoptera: Tortricidae): the influence of region and cultivar. Biol Control 54(3):300–306. doi:10.1016/j.biocontrol.2010.05.019 CrossRefGoogle Scholar
  36. Moret Y (2006) ‘Trans-generational immune priming’: specific enhancement of the antimicrobial immune response in the mealworm beetle, Tenebrio molitor. Proc R Soc B Biol Sci 273(1592):1399–1405. doi:10.1098/rspb.2006.3465 CrossRefGoogle Scholar
  37. Moret Y, Schmid-Hempel P (2000) Survival for immunity: the price of immune system activation for bumblebee workers. Science 290(5494):1166–1168. doi:10.1126/science.290.5494.1166 PubMedCrossRefGoogle Scholar
  38. Nakagawa S (2004) A farewell to Bonferroni: the problems of low statistical power and publication bias. Behav Ecol 15(6):1044–1045. doi:10.1093/beheco/arh107 CrossRefGoogle Scholar
  39. Nappi AJ, Ottaviani E (2000) Cytotoxicity and cytotoxic molecules in invertebrates. Bioessays 22(5):469–480. doi:10.1002/(sici)1521-1878(200005)22:5<469::aid-bies9>;2-4 PubMedCrossRefGoogle Scholar
  40. Panzavolta T (2007) Instar determination for Pissodes castaneus (Coleoptera: Curculionidae) using head capsule widths and lengths. Environ Entomol 36:1054–1058PubMedCrossRefGoogle Scholar
  41. Peacor SD (2003) Phenotypic modifications to conspecific density arising from predation risk assessment. Oikos 100(2):409–415. doi:10.1034/j.1600-0706.2003.12043.x CrossRefGoogle Scholar
  42. Pletcher SD, Macdonald SJ, Marguerie R, Certa U, Stearns SC, Goldstein DB, Partridge L (2002) Genome-wide transcript profiles in aging and calorically restricted Drosophila melanogaster. Curr Biol 12(9):712–723. doi:10.1016/s0960-9822(02)00808-4 PubMedCrossRefGoogle Scholar
  43. Ponton F, Wilson K, Cotter SC, Raubenheimer D, Simpson SJ (2011) Nutritional immunology: a multi-dimensional approach. PLoS Pathog 7 (12). doi:10.1371/journal.ppat.1002223
  44. Povey S, Cotter SC, Simpson SJ, Lee KP, Wilson K (2009) Can the protein costs of bacterial resistance be offset by altered feeding behaviour? J Anim Ecol 78(2):437–446. doi:10.1111/j.1365-2656.2008.01499.x PubMedCrossRefGoogle Scholar
  45. Rantala MJ, Roff DA (2005) An analysis of trade-offs in immune function, body size and development time in the Mediterranean field cricket, Gryllus bimaculatus. Funct Ecol 19(2):323–330. doi:10.1111/j.1365-2435.2005.00979.x CrossRefGoogle Scholar
  46. Reznick D, Nunney L, Tessier A (2000) Big houses, big cars, superfleas and the costs of reproduction. Trends Ecol Evol 15(10):421–425. doi:10.1016/s0169-5347(00)01941-8 PubMedCrossRefGoogle Scholar
  47. Roehrich R, Boller E (1991) Tortricids in vineyards. In: Van der Gesst LPS, Evenhuis HH (ed) Tortricid pests, their biology natural enemies and control. Elsvier, Amsterdam, pp 507–514Google Scholar
  48. Sadd BM, Siva-Jothy MT (2006) Self-harm caused by an insect's innate immunity. Proc R Soc B Biol Sci 273(1600):2571–2574. doi:10.1098/rspb.2006.3574 CrossRefGoogle Scholar
  49. Schmid-Hempel P (2003) Variation in immune defence as a question of evolutionary ecology. Proc R Soc B Biol Sci 270(1513):357–366. doi:10.1098/rspb.2002.2265 CrossRefGoogle Scholar
  50. Schmid-Hempel P (2011) Evolutionary parasitology. Oxford University Press, OxfordGoogle Scholar
  51. Sheldon BC, Verhulst S (1996) Ecological immunology: costly parasite defences and trade-offs in evolutionary ecology. Trends Ecol Evol 11(8):317–321. doi:10.1016/0169-5347(96)10039-2 PubMedCrossRefGoogle Scholar
  52. Siva-Jothy MT, Moret Y, Rolff J (2005) Insect immunity: an evolutionary ecology perspective. In: Simpson SJ (ed) Advances in insect physiology, Vol 32, vol 32. Advances in Insect Physiology. pp 1–48. doi:10.1016/s0065-2806(05)32001-7
  53. Siva-Jothy MT, Thompson JJW (2002) Short-term nutrient deprivation affects immune function. Physiol Entomol 27(3):206–212. doi:10.1046/j.1365-3032.2002.00286.x CrossRefGoogle Scholar
  54. Smilanich AM, Dyer LA, Chambers JQ, Bowers MD (2009) Immunological cost of chemical defence and the evolution of herbivore diet breadth. Ecol Lett 12(7):612–621. doi:10.1111/j.1461-0248.2009.01309.x PubMedCrossRefGoogle Scholar
  55. Thiéry D (2005) Vers de la grappe: les connaître pour s'en protéger. Vigne & Vin Publications Internationales, BordeauxGoogle Scholar
  56. Thiéry D (2008) Les ravageurs de la Vigne, 2nd edn. Féret, BordeauxGoogle Scholar
  57. Thiery D, Gabel B (1993) Inter-specific avoidance of egg-associated semiochemicals in 4 tortricids. Experientia 49(11):998–1001. doi:10.1007/bf02125648 CrossRefGoogle Scholar
  58. Thiery D, Moreau J (2005) Relative performance of European grapevine moth (Lobesia botrana) on grapes and other hosts. Oecologia 143(4):548–557. doi:10.1007/s00442-005-0022-7 PubMedCrossRefGoogle Scholar
  59. Tinsley MC, Blanford S, Jiggins FM (2006) Genetic variation in Drosophila melanogaster pathogen susceptibility. Parasitology 132:767–773. doi:10.1017/s0031182006009929 PubMedCentralPubMedCrossRefGoogle Scholar
  60. Torres-Vila LM, Stockel J, Rodriguez-Molina MC (1997) Physiological factors regulating polyandry in Lobesia botrana (Lepidoptera: Tortricidae). Physiol Entomol 22(4):387–393. doi:10.1111/j.1365-3032.1997.tb01184.x CrossRefGoogle Scholar
  61. Tschirren B, Richner H (2006) Parasites shape the optimal investment in immunity. Proc R Soc B Biol Sci 273(1595):1773–1777. doi:10.1098/rspb.2006.3524 CrossRefGoogle Scholar
  62. Valtonen TM, Kleino A, Ramet M, Rantala MJ (2010) Starvation reveals maintenance cost of humoral ismmunity. Evol Biol 37(1):49–57. doi:10.1007/s11692-009-9078-3 CrossRefGoogle Scholar
  63. Vogelweith F, Thiery D, Quaglietti B, Moret Y, Moreau J (2011) Host plant variation plastically impacts different traits of the immune system of a phytophagous insect. Funct Ecol 25(6):1241–1247. doi:10.1111/j.1365-2435.2011.01911.x CrossRefGoogle Scholar
  64. Vogelweith F, Thiéry D, Moret Y, Moreau J (2013) Immunocompetence increases with larval body size in a phytophagous moth. Physiol Entomol 38:219–225Google Scholar
  65. Yang SY, Ruuhola T, Haviola S, Rantala MJ (2008) Effects of host-plant shift on immune and other key life-history traits of an eruptive Geometrid, Epirrita autumnata (Borkhausen). Ecol Entomol 33(4):510–516. doi:10.1111/j.1365-2311.2008.01000.x CrossRefGoogle Scholar
  66. Zuk M, Stoehr AM (2002) Immune defense and host life history. Am Nat 160:S9–S22. doi:10.1086/342131 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Fanny Vogelweith
    • 1
  • Morgane Dourneau
    • 1
  • Denis  Thiéry
    • 2
    • 3
  • Yannick Moret
    • 1
  • Jérôme Moreau
    • 1
  1. 1.Equipe Ecologie EvolutiveUniversité de BourgogneDijonFrance
  2. 2.INRA UMR 1065 Santé et Agroecologie du VignobleInstitut des Science de la Vigne et du VinVillenave d’Ornon CedexFrance
  3. 3.Université de BordeauxISVV, UMR 1065 Santé et Agroecologie du VignobleVillenave d’Ornon CedexFrance

Personalised recommendations