Advertisement

Naturwissenschaften

, Volume 100, Issue 12, pp 1187–1191 | Cite as

Larval anatomy of the pterobranch Cephalodiscus gracilis supports secondarily derived sessility concordant with molecular phylogenies

  • Thomas StachEmail author
Short Communication

Abstract

Pterobranchs have been interpreted as “missing links” combining primitive invertebrate features with advanced vertebrate-like characteristics. The first detailed morphological description of an ontogenetic stage of a pterobranch, based on digital 3D-reconstruction at electron microscopic resolution, reveals a triploblastic animal with monociliated epithelia, an extensive coelomic cavity, a through gut with an asymmetrically developed gill slit but no signs of planktonic specializations, such as ciliated bands. Therefore, this crawling larva supports the hypothesis proposed in previous molecular phylogenetic studies that pterobranchs could be derived within enteropneusts rather than being “missing links”.

Keywords

Deuterostome evolution Hemichordate Dipleurula 

Notes

Acknowledgments

I thank Katrin Braun, Ronny Vogler, and Benjamin Hebel for their help with the 3D-reconstruction. Funding of the DFG and BIOS is gratefully acknowledged.

Supplementary material

114_2013_1117_MOESM1_ESM.docx (92 kb)
ESM 1 (DOCX 91 kb)
ESM 2

(MOV 2913 kb)

114_2013_1117_Fig4_ESM.jpg (10.2 mb)
ESM 3

(JPEG 10478 kb)

114_2013_1117_MOESM3_ESM.eps (41.5 mb)
High resolution image (EPS 42496 kb)

References

  1. Agassiz A (1873) The history of balanoglossus and tornaria. Memoirs of the American Academy of Arts and Sciences. New Series 9:421–436Google Scholar
  2. Anderson K (1907) Die Pterobranchier der schwedischen Südpolar-Expedition 1901–1903. Wiss Ergebnschwedischen Südpolarexpedition 5:1–122Google Scholar
  3. Ax P (2003) Multicellular animals. Springer, BerlinCrossRefGoogle Scholar
  4. Balser EJ, Ruppert EE et al (1993) Ultrastructure of the coeloms of auricularia larvae (Holothuroidea: Echinodermata): evidence for the presence of an axocoel. Biol Bull 185:86–96CrossRefGoogle Scholar
  5. Bartolomaeus T, Quast B, Koch M (2009) Nephridial development and body cavity formation in Artemia salina (Crustacea: Branchiopoda): no evidence for any transitory coelom. Zoomorphology 128:247–262CrossRefGoogle Scholar
  6. Cannon JT, Rychel AL, Eccleston H, Halanych KM, Swalla BJ (2009) Molecular phylogeny of hemichordata, with updated status of deep-sea enteropneusts. Mol Phyl Evol 52(1):17–24CrossRefGoogle Scholar
  7. Caron J-B, Morris SC, Cameron CB (2013) Tubicolous enteropneusts from the Cambrian period. Nature 495:503–506PubMedCrossRefGoogle Scholar
  8. Conklin EG (1932) The embryology of amphioxus. J Morphol 54:69–151CrossRefGoogle Scholar
  9. Dilly PN (2013) Cephalodiscus reproductive biology (Pterobranchia, Hemichordata). Acta Zool. doi: 10.1111/azo.12015 Google Scholar
  10. Duboc V, Röttinger E, Lapraz F, Besnardeau L, Lepage T (2005) Left-right asymmetry in the sea urchin embryo is regulated by nodal signaling on the right side. Dev Cell 9:147–158PubMedCrossRefGoogle Scholar
  11. Gilchrist JDF (1915) Observations on the cape Cephalodiscus (C. gilchristi, Ridewood) and some of its early stages. With an appendix by Sidney F. Harmer, Sc.D., F.R.S. J Nat Hist 16:233–246CrossRefGoogle Scholar
  12. Harmer SF (1905) The Pterobranchia of the Siboga Expedition with an account of other species. In: Weber M (ed) Siboga-Expeditie: uitkomsten op zoölogisch, botanisch, oceanographisch en geologisch gebied verzameld in Nederlandsch Oost-Indië 1899–1900 aan boord HM Siboga onder commando van Luitenant ter Zee 1e kl GF Tydeman. E. J. Brill, Leyden, pp. 132Google Scholar
  13. Hay-Schmidt A (2000) The evolution of the serotonergic nervous system. Phil Trans R Soc London B 267:1071–1079Google Scholar
  14. Holland ND, Holland LZ (1993) Serotonin-containing cells in the nervous system and other tissues during ontogeny of a lancelet, Branchiostoma floridae. Acta Zool 74:195–204CrossRefGoogle Scholar
  15. John CC (1932) On the development of Cephalodiscus. ‘Discovery’ Report 6: 193–204Google Scholar
  16. Kaul-Strehlow S, Stach T (2013) A detailed description of the development of the hemichordate Saccoglossus kowalevskii using SEM, TEM, Histology and 3D-reconstructions. Front Zool 10:53PubMedCrossRefGoogle Scholar
  17. Lankester E (1905) On a new species of Cephalodiscus (C. nigrescens) from the antarctic ocean. Proc Roy Soc London 76:400–402Google Scholar
  18. Masterman AT (1900) On the further anatomy and budding process of Cephalodiscus dodecalophus. Trans R Soc Edinb 34:507–527CrossRefGoogle Scholar
  19. Nakano H, Lundin K, Bourlat SJ, Telford MJ, Funch P, Nyengaard JR, Obst M, Thorndyke MC (2013) Xenoturbella bocki exhibits direct development with similarities to Acoelomorpha. Nat Commun 4:1537PubMedCentralPubMedCrossRefGoogle Scholar
  20. Nielsen C (2012) Animal Evolution. Interrelationships of the living phyla. Oxford University Press, OxfordGoogle Scholar
  21. Nielsen C (2013) Life cycle evolution: was the eumetazoan ancestor a holopelagic, planktotrophic gastraea? BMC Evol Biol 13(1):171PubMedCentralPubMedCrossRefGoogle Scholar
  22. Palmer AR, Strobeck C (1986) Fluctuating asymmetry: measurement, analysis, patterns. Annu Rev Ecol Syst 17:391–421CrossRefGoogle Scholar
  23. Peterson KJ, Su Y-H, Arnone MI, Swalla B, King BL (2013) MicroRNAs support the monophyly of enteropneust hemichordates. J Exp Zool B Mol Dev Evol 320:368–374PubMedCrossRefGoogle Scholar
  24. Sato A, Holland PWH (2008) Asymmetry in a pterobranch hemichordate and the evolution of left–right patterning. Dev Dyn 237:3634–3639PubMedCrossRefGoogle Scholar
  25. Schepotieff A (1909) Die Pterobranchier des Indischen Ozeans. Zool Jahrb (Abt Syst Ökol Geogr Tiere) 28:429–448Google Scholar
  26. Semon R (1888) Die Entwicklung der Synapta digitata und ihre Bedeutung für die Phylogenie der Echinodermen. Jenaische Z Naturwiss 22:175–308Google Scholar
  27. Spéder P, Petzoldt A, Suzanne M, Noselli S (2007) Strategies to establish left/right asymmetry in vertebrates and invertebrates. Curr Opin Genet Dev 17:351–358PubMedCrossRefGoogle Scholar
  28. Stach T (2000) Microscopic anatomy of developmental stages of Branchiostoma lanceolatum (Cephalochordata, Chordata). Bonn Zool Monogr 47:1–111Google Scholar
  29. Stach T (2002) Minireview: on the homology of the protocoel in Cephalochordata and ‘lower’ Deuterostomia. Acta Zool 83:25–31CrossRefGoogle Scholar
  30. Thompson JV (1836) Natural history and metamorphosis of an anomalous crustaceous parasite of Carcinus maenas, the Sacculina carcini. Entomol Mag London 3:452–456Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Humboldt-Universität zu Berlin, Comparative ZoologyBerlinGermany

Personalised recommendations