Skip to main content
Log in

Tolerating an infection: an indirect benefit of co-founding queen associations in the ant Lasius niger

  • Original Paper
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

Pathogens exert a strong selection pressure on organisms to evolve effective immune defences. In addition to individual immunity, social organisms can act cooperatively to produce collective defences. In many ant species, queens have the option to found a colony alone or in groups with other, often unrelated, conspecifics. These associations are transient, usually lasting only as long as each queen benefits from the presence of others. In fact, once the first workers emerge, queens fight to the death for dominance. One potential advantage of co-founding may be that queens benefit from collective disease defences, such as mutual grooming, that act against common soil pathogens. We test this hypothesis by exposing single and co-founding queens to a fungal parasite, in order to assess whether queens in co-founding associations have improved survival. Surprisingly, co-foundresses exposed to the entomopathogenic fungus Metarhizium did not engage in cooperative disease defences, and consequently, we find no direct benefit of multiple queens on survival. However, an indirect benefit was observed, with parasite-exposed queens producing more brood when they co-founded, than when they were alone. We suggest this is due to a trade-off between reproduction and immunity. Additionally, we report an extraordinary ability of the queens to tolerate an infection for long periods after parasite exposure. Our study suggests that there are no social immunity benefits for co-founding ant queens, but that in parasite-rich environments, the presence of additional queens may nevertheless improve the chances of colony founding success.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams ES, Tschinkel WR (1995) Effects of foundress number on brood raids and queen survival in the fire ant Solenopsis invicta. Behav Ecol Sociobiol 37:233–242. doi:10.1007/BF00177402

    Article  Google Scholar 

  • Ahmed A, Baggott S, Maingon R, Hurd H (2002) The costs of mounting an immune response are reflected in the reproductive fitness of the mosquito Anopheles gambiae. Oikos 3:371–377. doi:10.1034/j.1600-0706.2002.970307.x

    Article  Google Scholar 

  • Alexander RD (1974) The evolution of social behavior. Annu Rev Ecol Evol Syst 5:325–383

    Article  Google Scholar 

  • Altizer S, Nunn C, Thrall P (2003) Social organization and parasite risk in mammals: integrating theory and empirical studies. Annu Rev Ecol Evol Syst 34:517–547. doi:10.1146/annurev.ecolsys.34.030102.151725

    Article  Google Scholar 

  • Aron S, Steinhauer N, Fournier D (2009) Influence of queen phenotype, investment and maternity apportionment on the outcome of fights in cooperative foundations of the ant Lasius niger. Anim Behav 77:1067–1074. doi:10.1016/j.anbehav.2009.01.009

    Article  Google Scholar 

  • Baer B, Armitage SA, Boomsma JJ (2006) Sperm storage induces an immunity cost in ants. Nature 441:872–875. doi:10.1038/nature04698

    Article  CAS  PubMed  Google Scholar 

  • Bernasconi G, Strassmann JE (1999) Cooperation among unrelated individuals: the ant foundress case. Trends Ecol Evol 14:477–482. doi:10.1016/S0169-5347(99)01722-X

    Article  PubMed  Google Scholar 

  • Bischoff JF, Rehner SA, Humber RA (2009) A multilocus phylogeny of the Metarhizium anisopliae lineage. Mycologia 101:512–530. doi:10.3852/07-202

    Article  CAS  PubMed  Google Scholar 

  • Boomsma JJ, Leusink A (1981) Weather conditions during nuptial flights of four European ant species. Oecologia 50:236–241. doi:10.1007/BF00348045

    Article  Google Scholar 

  • Boomsma JJ, Van Der Have T (1998) Queen mating and paternity variation in the ant Lasius niger. Mol Ecol 7:1709–1718. doi:10.1046/j.1365-294x.1998.00504.x

    Article  Google Scholar 

  • Boomsma JJ, Schmid-Hempel P, Hughes WOH (2005) Life histories and parasite pressure across the major groups of social insects. In: Fellowes MDE, Holloway G, Rolff J (eds) Insect evolutionary ecology, 1st edn. CABI Publishing, Wallingford, pp 139–176

    Google Scholar 

  • Boots M, Begon M (1993) Trade-offs with resistance to a granulosis virus in the Indian meal moth, examined by a laboratory evolution experiment. Funct Ecol 7:528–534

    Article  Google Scholar 

  • Bourke AFG, Franks NR (1995) Social evolution in ants. Princeton University Press, Princeton, pp 258–298

    Google Scholar 

  • Brown M (2000) From the laboratory to the field: the advantage of pleometrotic colony founding. Trends Ecol Evol 15:116. doi:10.1016/S0169-5347(99)01809-1

    Article  PubMed  Google Scholar 

  • Calleri DV II, Rosengaus RB, Traniello JFA (2005) Disease and colony foundation in the dampwood termite Zootermopsis angusticollis: the survival advantage of nestmate pairs. Naturwissenschaften 92:300–304. doi:10.1007/s00114-005-0630-4

    Article  CAS  PubMed  Google Scholar 

  • Calleri DV II, Rosengaus RB, Traniello JFA (2007) Immunity and reproduction during colony foundation in the dampwood termite, Zootermopsis angusticollis. Physiol Entomol 32:136–142. doi:10.1111/j.1365-3032.2007.00559.x

    Article  Google Scholar 

  • Castella G, Christe P, Chapuisat M (2009) Mating triggers dynamic immune regulations in wood ant queens. J Evol Biol 22:564–570. doi:10.1111/j.1420-9101.2008.01664.x

    Article  CAS  PubMed  Google Scholar 

  • Chouvenc T, Su N-Y, Kenneth Grace J (2011) Fifty years of attempted biological control of termites – analysis of a failure. Biol Control 59:69–82. doi:10.1016/j.biocontrol.2011.06.015

    Article  Google Scholar 

  • Copeland EK, Fedorka KM (2012) The influence of male age and simulated pathogenic infection on producing a dishonest sexual signal. Proc R Soc B. doi:10.1098/rspb.2012.1914

    PubMed  Google Scholar 

  • Core Team R (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Cremer S, Armitage SAO, Schmid-Hempel P (2007) Social Immunity. Curr Biol 17:693–702. doi:10.1016/j.cub.2007.06.008

    Article  Google Scholar 

  • Deacon JW (2006) Fungal biology. Blackwell Publishing, Malden, pp 309–313

    Google Scholar 

  • Fellowes MDE, Kraaijeveld AR, Godfray HCJ (1998) Trade-off associated with selection for increased ability to resist parasitoid attack in Drosophila melanogaster. Proc R Soc B 265:1553–1558

    Article  CAS  PubMed  Google Scholar 

  • Festa-Bianchet M (1989) Individual differences, parasites, and the costs of reproduction for bighorn ewes (Ovis canadensis). J Anim Ecol 58:785–795

    Article  Google Scholar 

  • Fjerdingstad E, Gertsch PJ, Keller L (2003) The relationship between multiple mating by queens, withincolony genetic variability and fitness in the ant Lasius niger. J Evol Biol 16:844–853. doi:10.1046/j.1420-9101.2003.00589.x

    Article  CAS  PubMed  Google Scholar 

  • Fowler HG, Pereira da Silva V, Forti LC, Saes NB (1986) Population dynamics of leaf-cutting ants: a brief review. In: Lofgren CS, Vander Meer RK (eds) Ants and leaf cutting ants: biology and management. Westview Press, Boulder, pp 123–145

    Google Scholar 

  • Freeland WJ (1976) Pathogens and the evolution of primate sociality. Biotropica 8:12–24

    Article  Google Scholar 

  • Graystock P, Hughes WOH (2011) Disease resistance in a weaver ant, Polyrhachis dives, and the role of antibiotic-producing glands. Behav Ecol Sociobiol 65:2319–2327. doi:10.1007/s00265-011-1242-y

    Article  Google Scholar 

  • Gustafsson L, Nordling D, Andersson MS, Sheldon BC, Qvarnström A (1994) Infectious diseases, reproductive effort and the cost of reproduction in birds. Philos Trans R Soc Lond B 346:323–331. doi:10.1098/rstb.1994.0149

    Article  CAS  Google Scholar 

  • Gwynn DM, Callaghan A, Gorham J, Walters KFA, Fellowes, MDE (2005) Resistance is costly: trade-offs between immunity, fecundity and survival in the pea aphid. Proc R Soc B 1803–1808. doi:10.1098/rspb.2005.3089

  • Hamilton C, Lejeune BT, Rosengaus RB (2011) Trophallaxis and prophylaxis: social immunity in the carpenter ant Camponotus pennsylvanicus. Biol Lett 7:89–92. doi:10.1098/rsbl.2010.0466

    Article  PubMed Central  PubMed  Google Scholar 

  • Hartke TR (2010) Breeding strategies and the reproductive ecology of Nasutitermes corniger. Dissertation, Northeastern University

  • Hartke TR, Rosengaus RB (2013) Costs of pleometrosis in a polygamous termite. Proc R Soc B 280:20122563. doi:10.1098/rspb.2012.2563

    Article  PubMed  Google Scholar 

  • Hölldobler B, Wilson EO (1990) The ants. Harvard University Press, Cambridge

    Book  Google Scholar 

  • Holman L, Dreier S, D'Ettorre P (2010) Selfish strategies and honest signalling: reproductive conflicts in ant queen associations. Proc R Soc B 277:2007–2015. doi:10.1098/rspb.2009.2311

    Article  CAS  PubMed  Google Scholar 

  • Hughes WOH, Eilenberg J, Boomsma JJ (2002) Trade-offs in group living: transmission and disease resistance in leaf-cutting ants. Proc R Soc B 269:1811–1819. doi:10.1098/rspb.2002.2113

    Article  PubMed  Google Scholar 

  • Hughes WOH, Thomsen L, Eilenberg J, Boomsma JJ (2004) Diversity of entomopathogenic fungi near leaf-cutting ant nests in a neotropical forest, with particular reference to Metarhizium anisopliae var. anisopliae. J Invertebr Pathol 85:46–53. doi:10.1016/j.jip.2003.12.005

    Article  CAS  PubMed  Google Scholar 

  • Hughes WOH, Bot ANM, Boomsma JJ (2010) Caste-specific expression of genetic variation in the size of antibiotic-producing glands of leaf-cutting ants. Proc R Soc B 277:609–615. doi:10.1098/rspb.2009.1415

    Article  CAS  PubMed  Google Scholar 

  • Janet C (1907) Anatomie du corselet et histolyse des muscles vibrateurs, aprés le vol nuptial chez la reine de la fourmi (Lasius niger). Ducourtieux & Gout, Limoges

    Google Scholar 

  • Keller S, Kessler P, Schweizer C (2003) Distribution of insect pathogenic soil fungi in Switzerland with special reference to Beauveria brongniartii and Metharhizium anisopliae. BioControl 48:307–319. doi:10.1023/A:1023646207455

    Article  Google Scholar 

  • Konrad M, Vyleta ML, Theis FJ, Stock M, Tragust S, Klatt M, Drescher V, Marr C, Ugelvig LV, Cremer S (2012) Social transfer of pathogenic fungus promotes active immunisation in ant colonies. PLoS Biol 10:e1001300. doi:10.1371/journal.pbio.1001300

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Krause J, Ruxton GD (2002) Living in groups. Oxford University Press, New York, pp 51–52

    Google Scholar 

  • Lacey LA, Brooks WM (1997) Initial handling and diagnosis of diseased invertebrates. In: Lacey LA (ed) Manual of techniques in invertebrate pathology. Academic Press, San Diego, p 5

    Google Scholar 

  • Mersch DP, Crespsi A, Keller L (2013) Tracking individuals shows spatial fidelity is a key regulator of ant social organization. Science. doi:10.1126/science.1234316

    PubMed  Google Scholar 

  • Mills M (2011) Introducing survival and event history analysis. SAGE Publications, London

    Google Scholar 

  • Møller A, Dufva R, Allander K (1993) Parasites and the evolution of host social behavior. In: Slater PJB, Rosenblatt, JS, Snowdon, CT, Milinksi, M (eds) Advances in the study of behavior. Academic Press, San Diego, 22:65–122

  • Nonacs P (1990) Size and kinship affect success of co-founding Lasius pallitarsis queens. Psyche 97:217–228. doi:10.1155/1990/21379

    Article  Google Scholar 

  • Nunn CL, Altizer S (2006) Infectious diseases in primates: behavior, ecology and evolution. Oxford University Press, New York, pp 150–155

    Book  Google Scholar 

  • Oi DH, Pereira RM (1993) Ant behavior and microbial pathogens (Hymenoptera: Formicidae). Fla Entomol 76:63–74

    Article  Google Scholar 

  • Okuno M, Tsuji K, Sato H, Fujisaki K (2011) Plasticity of grooming behavior against entomopathogenic fungus Metarhizium anisopliae in the ant Lasius japonicus. J Ethol 30:23–27. doi:10.1007/s10164-011-0285-x

    Article  Google Scholar 

  • Reber A, Chapuisat M (2012) Diversity, prevalence and virulence of fungal entomopathogens in colonies of the ant Formica selysi. Insect Soc 59:231–239. doi:10.1007/s00040-011-0209-3

    Article  Google Scholar 

  • Reber A, Meunier J, Chapuisat M (2010) Flexible colony-founding strategies in a socially polymorphic ant. Anim Behav 79:467–472. doi:10.1016/j.anbehav.2009.11.030

    Article  Google Scholar 

  • Reber A, Purcell J, Buechel SD, Buri P, Chapuisat M (2011) The expression and impact of antifungal grooming in ants. J Evol Biol 24:954–964. doi:10.1111/j.1420-9101.2011.02230.x

    Article  CAS  PubMed  Google Scholar 

  • Rissing S, Pollock G, Higgins M, Hagen RH, Roan Smith D (1989) Foraging specialization without relatedness or dominance among co-founding ant queens. Nature 338:420–422. doi:10.1038/338420a0

    Article  Google Scholar 

  • Roberts DW, St Leger RJ (2004) Metarhizium spp., cosmopolitan insect-pathogenic fungi: mycological aspects. Adv Appl Microbiol 54:1–70

    Article  CAS  PubMed  Google Scholar 

  • Rosengaus RB, Maxmen AB, Coates LE, Traniello JFA (1998) Disease resistance: a benefit of sociality in the dampwood termite Zootenmopsis angusticollis (Isoptera: Termopsidae). Behav Ecol Sociobiol 44:125–134. doi:10.1007/s002650050523

    Article  Google Scholar 

  • Sadd BM, Schmid-Hempel P (2006) Insect immunity shows specificity in protection upon secondary pathogen exposure. Curr Biol 16:1206–1210. doi:10.1016/j.cub.2006.04.047

    Article  CAS  PubMed  Google Scholar 

  • Schmid-Hempel P (1998) Parasites in social insects. Princeton University Press, Princeton

    Google Scholar 

  • Schmid-Hempel P (2011) Evolutionary parasitology: the integrated study of infections, immunology, ecology, and genetics. Oxford University Press, New York

    Google Scholar 

  • Schmid-Hempel P, Schmid-Hempel R (1993) Transmission of a pathogen in Bombus terrestris, with a note on division of labour in social insects. Behav Ecol Sociobiol 33:319–327. doi:10.1007/BF00172930

    Article  Google Scholar 

  • Siva-Jothy MT, Tsubaki Y, Hooper RE (1998) Decreased immune response as a proximate cost of copulation and oviposition in a damselfly. Physiol Entomol 23:274–277. doi:10.1046/j.1365-3032.1998.233090.x

    Article  Google Scholar 

  • Sommer K, Hölldobler B (1995) Colony founding by queen association and determinants of reduction in queen number in the ant Lasius niger. Anim Behav 50:287–294. doi:10.1006/anbe.1995.0244

    Article  Google Scholar 

  • Therneau T (2013) A package for survival analysis in S. R package version 2.37-4

  • Tragust S, Mitteregger B, Barone V, Konrad M, Ugelvig LV, Cremer S (2013) Ants disinfect fungus-exposed brood by oral uptake and spread of their poison. Curr Biol 23:76–82. doi:10.1016/j.cub.2012.11.034

    Article  CAS  PubMed  Google Scholar 

  • Traniello JFA, Rosengaus RB, Keely S (2002) The development of immunity in a social insect: evidence for the group facilitation of disease resistance. Proc Natl Acad Sci U S A 99:6838. doi:10.1073/pnas.102176599

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tschinkel WR, Howard DF (1983) Colony founding by pleometrosis in the fire ant, Solenopsis invicta. Behav Ecol Sociobiol 12:103–113. doi:10.1007/BF00343200

    Article  Google Scholar 

  • Ugelvig LV, Cremer S (2007) Social prophylaxis: group interaction promotes collective immunity in ant colonies. Curr Biol 17:1967–1971. doi:10.1016/j.cub.2007.10.029

    Article  CAS  PubMed  Google Scholar 

  • Ugelvig LV, Kronauer DJC, Schrempf A, Heinze J, Cremer S (2010) Rapid anti-pathogen response in ant societies relies on high genetic diversity. Proc R Soc B 277:2821–2828. doi:10.1098/rspb.2010.0644

    Article  PubMed  Google Scholar 

  • Ulrich Y, Sadd BM, Schmid-Hempel P (2011) Strain filtering and transmission of a mixed infection in a social insect. J Evol Biol 24:354–362. doi:10.1111/j.1420-9101.2010.02172.x

    Article  CAS  PubMed  Google Scholar 

  • Walker TN, Hughes WOH (2009) Adaptive social immunity in leaf-cutting ants. Biol Lett 5:446–448. doi:10.1098/rsbl.2009.0107

    Article  PubMed Central  PubMed  Google Scholar 

  • Waloff N (1957) The effect of the number of queens of the ant Lasius flavus (Fab.) (Hym., Formicidae) on their survival and on the rate of development of the first brood. Insect Soc 4:391–408. doi:10.1007/BF02224159

    Article  Google Scholar 

  • Warnes GR et al. (2012) gmodels: various R programming tools for model fitting. R package version 2.15.3

  • Wheeler WM (1910) Ants: their structure, development and behavior. Columbia University Press, New York, pp 185–186

    Google Scholar 

  • Wilson EO (1955) A monographic revision of the ant genus Lasius. Bull Mus Comp Zool 113:1–201

    Google Scholar 

  • Wilson EO (1971) The insect societies. The Belknap Press of Harvard Univeristy Press, Cambridges

    Google Scholar 

  • Wilson-Rich N, Spivak M, Fefferman NH, Starks PT (2009) Genetic, individual, and group facilitation of disease resistance in insect societies. Annu Rev Entomol 54:405–423. doi:10.1146/annurev.ento.53.103106.093301

    Article  CAS  PubMed  Google Scholar 

  • Yan G, Severson D, Christensen B (1997) Costs and benefits of mosquito refractoriness to malaria parasites: implications for genetic variability of mosquitoes and genetic control of malaria. Evolution 51:441–450

    Article  Google Scholar 

  • Yanagawa A, Shimizu S (2007) Resistance of the termite, Coptotermes formosanus Shiraki to Metarhizium anisopliae due to grooming. BioControl 52:75–85. doi:10.1007/s10526-006-9020-x

    Article  Google Scholar 

  • Yek SH, Nash DR, Jensen AB, Boomsma JJ (2012) Regulation and specificity of antifungal metapleural gland secretion in leaf-cutting ants. Proc R Soc B 279:4215–4222. doi:10.1098/rspb.2012.1458

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Catherine Jones and Matthias Fürst for assistance in maintaining ant colonies and help with collecting data, Miriam Stock for helpful comments on an earlier draft of the manuscript, Bill Wcislo and four anonymous reviewers for comments which greatly improved the manuscript, Meghan L. Vyleta for fungal characterisation and Line V. Ugelvig for advice on statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher D. Pull.

Additional information

Communicated by: Sven Thatje

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1

(PDF 217 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pull, C.D., Hughes, W.O.H. & Brown, M.J.F. Tolerating an infection: an indirect benefit of co-founding queen associations in the ant Lasius niger . Naturwissenschaften 100, 1125–1136 (2013). https://doi.org/10.1007/s00114-013-1115-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-013-1115-5

Keywords

Navigation