Naturwissenschaften

, Volume 100, Issue 10, pp 943–956 | Cite as

Stable isotopes document resource partitioning and effects of forest disturbance on sympatric cheirogaleid lemurs

  • B. E. Crowley
  • M. B. Blanco
  • S. J. Arrigo-Nelson
  • M. T. Irwin
Original Paper

Abstract

The future of Madagascar’s forests and their resident lemurs is precarious. Determining how species respond to forest fragmentation is essential for management efforts. We use stable isotope biogeochemistry to investigate how disturbance affects resource partitioning between two genera of cheirogaleid lemurs (Cheirogaleus and Microcebus) from three humid forest sites: continuous and fragmented forest at Tsinjoarivo, and selectively logged forest at Ranomafana. We test three hypotheses: (H1) cheirogaleids are unaffected by forest fragmentation, (H2) species respond individually to disturbance and may exploit novel resources in fragmented habitat, and (H3) species alter their behavior to rely on the same key resource in disturbed forest. We find significant isotopic differences among species and localities. Carbon data suggest that Microcebus feed lower in the canopy than Cheirogaleus at all three localities and that sympatric Cheirogaleus crossleyi and C. sibreei feed at different canopy heights in the fragmented forest. Microcbus have higher nitrogen isotope values than Cheirogaleus at all localities, indicating more faunivory. After accounting for baseline isotope values in plants, our results provide the most support for H3. We find similar isotopic variations among localities for both genera. Small differences in carbon among localities may reflect shifts in diet or habitat use. Elevated nitrogen values for cheirogaleid lemurs in fragments may reflect increased arthropod consumption or nutritional stress. These results suggest that cheirogaleids are affected by forest disturbance in Eastern Madagascar and stress the importance of accounting for baseline isotopic differences in plants in any work comparing localities.

Keywords

Madagascar Cheirogaleus Microcebus Carbon stable isotope Nitrogen stable isotope Apparent fractionation 

Supplementary material

114_2013_1094_MOESM1_ESM.xls (61 kb)
Online Resource 1(XLS 61 kb)
114_2013_1094_MOESM2_ESM.xls (80 kb)
Online Resource 2(XLS 80 kb)

References

  1. Ambrose SH (1991) Effects of diet, climate and physiology on nitrogen isotope abundances in terrestrial foodwebs. J Archaeol Sci 18:293–317CrossRefGoogle Scholar
  2. Amundson R, Austin AT, Schuur AG, Yoo K, Matzek V, Kendall C, Uebersax A, Brenner D, Baisden WT (2003) Global patterns of the isotopic composition of soil and plant nitrogen. Global Biogeochem Cycles 17:1031CrossRefGoogle Scholar
  3. Arrigo-Nelson SJ (2006) The impact of habitat disturbance on the feeding ecology of the Milne–Edwards’ sifaka (Propithecus edwardsi) in Ranomafana National Park. Stony Brook University, Stony Brook, NY, Madagascar. PhD dissertationGoogle Scholar
  4. Atsalis S (2008) A natural history of the brown mouse lemur. Pearson Prentice Hall, Upper Saddle RiverGoogle Scholar
  5. Balko EA, Underwood HB (2005) Effects of forest structure and composition on food availability for Varecia variegata at Ranomafana National Park, Madagascar. Am J Primatol 66:45–70PubMedCrossRefGoogle Scholar
  6. Ben-David M, Flaherty EA (2012) Stable isotopes in mammalian research: a beginner’s guide. J Mammal 93(2):312–328CrossRefGoogle Scholar
  7. Blanco MB (2010) Reproductive biology of mouse and dwarf lemurs of eastern Madagascar, with an emphasis on brown mouse lemurs (Microcebus rufus) at Ranomafana National Park, southeastern Madagascar. PhD dissertation, University of Massachusetts-Amherst, Amherst, MAGoogle Scholar
  8. Blanco MB, Dausmann KH, Ranaivoarisoa JF, Yoder AD (2013) Underground hibernation in a primate. Sci Rep 3:1768. doi:10.1038/srep01768 PubMedCrossRefGoogle Scholar
  9. Blanco MB, Godfrey LR (2013) Hibernation patterns of dwarf lemurs in the high altitude forest of eastern Madagascar. In: Gursky-Doyen S, Grow N and Krzton A (eds) High Altitude Primates. Developments in Primatology: Progress and Prospects, vol 44Google Scholar
  10. Blanco MB, Godfrey LR, Rakotondratsima M, Rahalinarivo V, Samonds KE, Raharison J-L, Irwin MT (2009) Discovery of sympatric dwarf lemur species in the high-altitude rain forest of Tsinjoarivo, Eastern Madagascar: implications for biogeography and conservation. Folia Primatol 80:1–17PubMedCrossRefGoogle Scholar
  11. Blanco MB, Rahalinarivo V (2010) First direct evidence of hibernation in an eastern dwarf lemur species (Cheirogaleus crossleyi) from the high-altitude forest of Tsinjoarivo, central-eastern Madagascar. Naturwissenschaften 97:945–950PubMedCrossRefGoogle Scholar
  12. Blumenthal SA, Chritz KL, Rothman JM, Cerling TE (2013) Detecting intraannual dietary variability in wild mountain gorillas by stable isotope analysis of feces. Proc Natl Acad Sci U S A. doi:10.1073/pnas.1215782109, early viewPubMedGoogle Scholar
  13. Broadmeadow MSJ, Griffiths H, Maxwell C, Borland AM (1992) The carbon isotope ratio of plant organic material reflects temporal and spatial variations in CO2 within the tropical forest formations in Trinidad. Oecologia 89(3):435–441Google Scholar
  14. Brown KA, Gurevitch J (2004) Long-term impacts of logging on forest diversity in Madagascar. Proc Natl Acad Sci U S A 101(16):6045–6049PubMedCrossRefGoogle Scholar
  15. Bump JK, Fox-Dobbs K, Bada JL, Koch PL, Peterson RO, Vucetich JA (2007) Stable isotopes, ecological integration and environmental change: wolves record atmospheric carbon isotope trend better than tree rings. Proc Natl Acad Sci U S A 274:2471–2780Google Scholar
  16. Caut S, Angulo E, Courchamp F (2008) Discrimination factors (Δ15N and Δ13C) in an omnivorous consumer: effect of diet isotopic ratio. Funct Ecol 22:255–263. doi:10.1111/j.1365-2435.2007.01360.x CrossRefGoogle Scholar
  17. Cerling TE, Hart JA, Hart TB (2004) Isotope ecology in the Ituri forest. Oecologia 138(1):5–12PubMedCrossRefGoogle Scholar
  18. Cernusak LA, Tcherkez G, Keitel C, Cornwell WK, Santiago LS, Knohl A, Barbour MM, Williams DG, ReichI PB, Ellsworth DS, Dawson TE, Griffiths HG, Farquhar GD, Wright IJ (2009) Why are non-photosynthetic tissues generally 13C enriched compared with leaves in C3 plants? Review and synthesis of current hypotheses. Funct Plant Biol 36(3):199–213CrossRefGoogle Scholar
  19. Codron D, Lee-Thorp JA, Sponheimer M, Codron J (2007) Stable carbon isotope reconstruction of ungulate diet changes through the seasonal cycle. S Afr J Wildl Res 37(2):117–125CrossRefGoogle Scholar
  20. Cook GD (2001) Effects of frequent fires and grazing on stable nitrogen isotope ratios of vegetation in northern Australia. Austral Ecol 26:630–636CrossRefGoogle Scholar
  21. Corbin GD, Schmid J (1995) Insect secretions determine habitat use patterns by a female lesser mouse lemur (Microcebus murinus). Am J Primatol 37:317–324CrossRefGoogle Scholar
  22. Crooks KR, Soulé ME (1999) Mesopredator release and avifaunal extinctions in a fragmented system. Nature 400:563–566CrossRefGoogle Scholar
  23. Crowley BE (2012) Stable isotope techniques and applications for primatologists. Int J Primatol 33:673–701. doi:10.1007/s10764-012-9582-7 CrossRefGoogle Scholar
  24. Crowley BE, Thorén S, Rasoazanabary E, Vogel ER, Barrett MA, Zohdy S, Blanco MB, McGoogan KC, Arrigo-Nelson SJ, Irwin MT, Wright PC, Radespiel U, Godfrey LR, Koch PL, Dominy NJ (2011) Explaining geographical variation in the isotope composition of mouse lemurs (Microcebus). J Biogeogr 38:2106–2121CrossRefGoogle Scholar
  25. Dammhahn M, Kappeler PM (2010) Scramble or contest competition over food in solitarily foraging mouse lemurs (Microcebus spp.): new insights from stable isotopes. Am J Phys Anthropol 141:181–189PubMedGoogle Scholar
  26. Dammhahn M, Soarimalala V, Goodman SM (2013) Trophic niche differentiation and microhabitat utilization in a species-rich montane forest small mammal community of eastern Madagascar. Biotropica 45(1):111–118. doi:10.1111/j.1744-7429.2012.00893.x CrossRefGoogle Scholar
  27. Darling AF, Bayne EM (2010) The potential of stable isotope (δ13C, δ15N) analyses for measuring foraging behaviour of animals in disturbed boreal forest. Ecoscience 17(1):73–82CrossRefGoogle Scholar
  28. Dausmann KH, Glos J, Ganzhorn JU, Heldmaier G (2005) Hibernation in the tropics: lessons from a primate. J Comp Physiol B 175:147–155PubMedCrossRefGoogle Scholar
  29. DeNiro MJ, Epstein S (1978) Influence of diet on the distribution of carbon isotopes in animals. Geochim Cosmochim Acta 42:495–506CrossRefGoogle Scholar
  30. DeNiro MJ, Epstein S (1981) Influence of diet on the distribution of nitrogen isotopes in animals. Geochim Cosmochim Acta 45:341–351CrossRefGoogle Scholar
  31. Ehleringer JR, Field CB, Lin ZF, Kyu CY (1986) Leaf carbon isotope and mineral composition in subtropical plants along an irradiance cline. Oecologia 70:520–526CrossRefGoogle Scholar
  32. Evans RD (2001) Physiological mechanisms influencing plant nitrogen isotope composition. Trends Plant Sci 6(3):121–126PubMedCrossRefGoogle Scholar
  33. Evans RD, Belnap J (1999) Long-term consequences of disturbance on nitrogen dynamics in an arid ecosystem. Ecology 80(1):150–160CrossRefGoogle Scholar
  34. Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 34:487–515CrossRefGoogle Scholar
  35. Fietz J, Ganzhorn JU (1999) Feeding ecology of the hibernating primate Cheirogaleus medius: how does it get so fat? Oecologia 121(2):157–164CrossRefGoogle Scholar
  36. Flaherty EA, Ben-David M (2010) Overlap and partitioning of the ecological and isotopic niches. Oikos 119:1409–1416CrossRefGoogle Scholar
  37. Flaherty EA, Ben-David M, Smith WP (2010) Diet and food availability: implications for foraging and dispersal of Prince of Wales northern flying squirrels across managed landscapes. J Mammal 91(1):79–91CrossRefGoogle Scholar
  38. Fox-Dobbs K, Bump JK, Peterson RO, Fox DL, Koch PL (2007) Carnivore-specific stable isotope variables and variation in the foraging ecology of modern and ancient wolf populations: case studies from Isle Royale, Minnesota, and La Brea. Can J Zool 85(4):458–471CrossRefGoogle Scholar
  39. France R (1996) Carbon isotope ratios in logged and unlogged boreal forests: examination of the potential for dermining wildlife habitat use. J Environ Manage 20(2):249–256Google Scholar
  40. Ganzhorn JU (1995) Low-level forest disturbance effects on primary production, leaf chemistry, and lemur populations. Ecology 76(7):2084–2096CrossRefGoogle Scholar
  41. Ganzhorn JU, Arrigo-Nelson SJ, Boinski S, Bollen A, Carrai V, Derby A, Donati G, Koenig A, Kowalewski M, Lahan P, Norscia I, Polowinsky SY, Schwitzer C, Stevenson PR, Talebi MG, Tan C, Vogel ER, Wright PC (2009) Possible fruit protein effects on primate communities in Madagascar and the Neotropics. PLoS ONE 4(12):e8253PubMedCrossRefGoogle Scholar
  42. Ganzhorn JU, Malcomber S, Andriantoanina O, Goodman SM (1997) Habitat characteristics and lemur species richness in Madagascar. Biotropica 29(3):331–343CrossRefGoogle Scholar
  43. Gibson L (2011) Possible shift in macaque trophic level following a century of biodiversity loss in Singapore. Primates 52(3):217–220PubMedCrossRefGoogle Scholar
  44. Groeneveld LF, Blanco MB, Raharison J-L, Rahalinarivo V, Rasoloarison R, Kappeler PM, Godfrey LR, Irwin MT (2010) MtDNA and nDNA corroborate existence of sympatric dwarf lemur species at Tsinjoarivo. Mol Phylogenet Evol 55:833–845PubMedCrossRefGoogle Scholar
  45. Handley LL, Austin AT, Robinson D, Scrimgeour CM, Raven JA, Heaton THE, Schimdt S, Stewart GR (1999) The 15N natural abundance of δ15N of ecosystem samples reflects measures of water availability. Aust J Plant Physiol 26:185–199CrossRefGoogle Scholar
  46. Harper KA, MacDonald SE, Burton PJ, Chen J, Brosofske KD, Saunders SC, Euskirchen ES, Roberts D, Jaiteh MS, Esseen P-A (2005) Edge influence on forest structure and composition in fragmented landscapes. Conserv Biol 19(3):1–15CrossRefGoogle Scholar
  47. Harper GJ, Steininger MK, Tucker CJ, Juhn D, Hawkins F (2007) Fifty years of deforestation and forest fragmentation in Madagascar. Environ Conserv 34(4):325–333CrossRefGoogle Scholar
  48. Heaton THE (1999) Spatial, species, and temporal variations in the 13C/12C ratios of C3 plants: implications for palaeodiet studies. J Archaeol Sci 26:637–649CrossRefGoogle Scholar
  49. Herrera LG, Hobson KA, Miron LL, Ramirez N, Mendez CG, Sanchez-Cordero V (2001) Sources of protein in two species of phytophagous bats in a seasonal dry forest: evidence from stable-isotope analysis. J Mammal 82(2):352–361CrossRefGoogle Scholar
  50. Herrera LG, Hobson KA, Rodriguez M, Hernandez P (2003) Trophic partitioning in tropical rain forest birds: insights from stable isotope analysis. Oecologia 136:439–444PubMedCrossRefGoogle Scholar
  51. Hladik CM, Charles-Dominique P, Petter JJ (1980) Feeding strategies of five nocturnal prosimians in the dry forest of the west coast of Madagascar. In: CHarles-Dominique P, Cooper HM, Hladik A et al (eds) Nocturnal malagasy primates: ecology, physiology, and behavior. Academic Press, New York, pp 41–73Google Scholar
  52. Hobbie EA, Macko SA, Williams M (2000) Correlations between foliar δ15N and nitrogen concentrations may indicate plant-mycorrhizal interactions. Oecologia 122:273–283CrossRefGoogle Scholar
  53. Houle A (1997) The role of phylogeny and behavioral competition in the evolution of coexistence among primates. Can J Zool 75:827–846CrossRefGoogle Scholar
  54. Hutchinson GE (1959) Homage to Santa Rosalia or why are there so many kinds of animals? Am Nat 93(870):145–159CrossRefGoogle Scholar
  55. Huygens D, Denef K, Vanderweyer R, Godoy R, Van Cleeput O, Boeckx P (2008) Do nitrogen isotope patterns reflect microbial colonization of soil organic matter fractions? Biol Fertil Soils 44:955–964CrossRefGoogle Scholar
  56. Hyodo F, Matsumoto T, Takematsu Y, Kamoi T, Fukuda D, Nakagawa M, Itioka T (2010) The structure of a food web in a tropical rain forest in Malaysia based on carbon and nitrogen stable isotope ratios. J Trop Ecol 26(2):205–214CrossRefGoogle Scholar
  57. Irwin MT (2006) Ecological Impacts of Forest Fragmentation on Diademed Sifakas (Propithecus diadema) at Tsinjoarivo, Eastern Madagascar: implications for conservation in fragmented landscapes. PhD dissertation, Stony Brook University, Stony Brook, NYGoogle Scholar
  58. Irwin MT (2008a) Diademed sifaka (Propithecus diadema) ranging and habitat use in continuous and fragmented forest: higher density but lower viability in fragments? Biotropica 40(2):231–240CrossRefGoogle Scholar
  59. Irwin MT (2008b) Feeding ecology of Propithecus diadema in forest fragments and continuous forest. Int J Primatol 29:95–115CrossRefGoogle Scholar
  60. Irwin MT, Raharison J-L, Wright PC (2009) Spatial and temporal variability in predation on rainforest primates: do forest fragmentation and predation act synergistically? Anim Conserv 12:220–230. doi:10.1111/j.1469-1795.2009.00243.x CrossRefGoogle Scholar
  61. Irwin MT, Wright PC, Birkinshaw C, Fisher B, Gardner CJ, Glos J, Goodman SM, Loisell P, Rabeson P, Raharison J-L, Raherilalao MJ, Rakotondravony D, Raselimanana A, Ratsimbazafy J, Sparks J, Wilmé L, Ganzhorn JU (2010) Patterns of species change in anthropogenically disturbed forests of Madagascar. Biol Conserv 143:2351–2362CrossRefGoogle Scholar
  62. Kapos V, Ganade G, Matsui E, Victoria RL (1993) δ13C as an indicator of edge effects in tropical rainforest reserves. J Ecol 81:425–432CrossRefGoogle Scholar
  63. Kappeler PM, Rasoloarison RM (2003) Microcebus, mouse lemurs, Tsidy. In: Goodman SM, Benstead JP (eds) The natural history of Madagascar. Univ. Chicago Press, Chicago, pp 1310–1315Google Scholar
  64. Kappeler PM, Rasoloarison RM, Razafimanantsoa L, Walter L, Roos C (2005) Morphology, behavior and molecular evolution of giant mouse lemurs (Mirza spp.) Gray, 1870, with description of a new species. Primate Rep 71:3–26Google Scholar
  65. Kazda M, Salzer J (2000) Leaves of lianas and self-supporting plants differ in mass per unit area and in nitrogen content. Plant Biol 2(3):268–271. doi:10.1055/s-2000-3701 CrossRefGoogle Scholar
  66. Kelley EA (2011) Lemur catta in the region of Cap Sainte-Marie, Madagascar: introduced cacti, xerophytic Didiereaceae-Euphorbia bush, and tombs. PhD dissertation, Washington University, Saint Louis, MIGoogle Scholar
  67. Kobbe S, Dausmann KH (2009) Hibernation in Malagasy mouse lemurs as a strategy to counter environmental challenge. Naturwissenschaften 10:1221–1227CrossRefGoogle Scholar
  68. Kohn MJ (2010) Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo)ecology and (paleo)climate. Proc Natl Acad Sci U S A 107(46):19691–19695PubMedCrossRefGoogle Scholar
  69. Kupfer JA, Malanson GP, Franklin SB (2006) Not seeing the ocean for the islands: the mediating influence of matrix-based processes on forest fragmentation effects. Global Ecol Biogeogr 15:8–20CrossRefGoogle Scholar
  70. Lahann P (2007) Feeding ecology and seed dispersal of sympatric cheirogaleid lemurs (Microcebus murinus, Cheirogaleus medius, Cheirogaleus major) in the littoral rainforest of south-east Madagascar. J Zool 271:88–98CrossRefGoogle Scholar
  71. Laurance WF (1991) Ecological correlates of extinction proneness in Australian tropical rain forest mammals. Conserv Biol 5(1):79–89. doi:10.1111/j.1523-1739.1991.tb00390.x CrossRefGoogle Scholar
  72. Laurance WF, Ferriera LV, Rankin-de Merona JM, Laurance SG (1998) Rain forest fragmentation and the dynamics of Amazonian tree communities. Ecology 79(6):2032–2040CrossRefGoogle Scholar
  73. Lee TN, Buck CL, Barnes BM, O’Brien DM (2012) A test of alternative models for increased tissue nitrogen isotope ratios during fasting in hibernating arctic ground squirrels. J Exp Biol 215:3354–3361. doi:10.1242/jeb.068528 PubMedCrossRefGoogle Scholar
  74. Lehman SM (2007) Spatial variations in Eulemur fulvus rufus and Lepilemur mustelinus densities in Madagascar. Folia Primatol 78(1):46–55PubMedCrossRefGoogle Scholar
  75. Lehman SM, Rajoanson A, Day S (2006a) Edge effects and their influence on lemur distribution and density in southeast Madagascar. Am J Phys Anthropol 129(2):232–241. doi:10.1002/ajpa.20241 PubMedCrossRefGoogle Scholar
  76. Lehman SM, Rajoanson A, Day S (2006b) Edge effects on the density of Cheirogaleus major. Int J Primatol 27(6):1569–1588CrossRefGoogle Scholar
  77. Malcolm JR (1997) Biomass and diversity of small mammals in Amazonian forest fragments. In: Laurance WF, Bierregaard ROJ (eds) Tropical forest remnants: ecology, management, and conservation of fragmented communities. Univ. Chicago Press, Chicago, pp 207–221Google Scholar
  78. Martinelli LA, Piccolo MC, Townsend AR, Vitousek PM, Cuevas E, McDowell W, Robertson GP, Santos OC, Treseder K (1999) Nitrogen stable isotopic composition of leaves and soil: tropical versus temperate forests. Biogeochemistry 46:45–65Google Scholar
  79. McGee EM, Vaughn SE (2003) Variations in stable isotope composition in Propithecus diadema edwardsi from disturbed and undisturbed rainforest habitats in Ranomafana National Park, Madagascar. Am J Phys Anthropol 120(S36):149–150Google Scholar
  80. Miron LL, Herrera LG, Ramirez N, Hobson KA (2006) Effect of diet quality on carbon and nitrogen turnover and isotopic discrimination in blood of a New World nectarivorous bat. J Exp Biol 209:541–548CrossRefGoogle Scholar
  81. Nadelhoffer KJ, Fry B (1994) Nitrogen isotope studies in forest ecosystems. In: Lajtha K, Michener R (eds) Methods in ecology: stable isotopes in ecology and environmental science. Blackwell Scientific, Boston, pp 22–44Google Scholar
  82. Nakagawa M, Hyodo F, Nakashizuka T (2007) Effect of forest use on trophic levels of small mammals: an analysis using stable isotopes. Can J Zool 85:472–478CrossRefGoogle Scholar
  83. Onderdonk DA, Chapman CA (2000) Coping with forest fragmentation: the primates of Kibale National Park, Uganda. Int J Primatol 21(4):587–611CrossRefGoogle Scholar
  84. Peetz A, Norconk MA, Kinzey WG (1992) Predation by jaguar on howler monkeys (Alouatta seniculus) in Venezuela. Am J Primatol 28:223–228CrossRefGoogle Scholar
  85. Radespiel U (2006) Ecological diversity and seasonal adaptations of mouse lemurs (Microcebus spp.). In: Gould L, Sauther ML (eds) Lemurs: ecology and adaptation. Springer, New York, pp 211–233Google Scholar
  86. Radespiel U, Ehresmann P, Zimmerman E (2003) Species-specific usage of sleeping sites in two sympatric mouse lemur species (Microcebus murinus and M. ravelobensis) in northwestern Madagascar. Am J Primatol 59(4):139–151PubMedCrossRefGoogle Scholar
  87. Rakotondranary SJ, Struck U, Knoblauch C, Ganzhorn JU (2011) Regional, seasonal and interspecific variation in 15N and 13C in sypatric mouse lemurs. Naturwissenschaften 98(11):909–917PubMedCrossRefGoogle Scholar
  88. Rasoazanabary E (2011) The human factor in mouse lemur (Microcebus griseorufus) conservation: Local resource utilization and habitat disturbance at Beza Mahafaly SW Madagascar. PhD dissertation, University of Massachusetts–Amherst, Amherst, MAGoogle Scholar
  89. Richard AF, Dewar RE (1991) Lemur ecology. Annu Rev Ecol Evol Syst 22:145–175CrossRefGoogle Scholar
  90. Sauther ML, Cuozzo FP (2009) The impact of fallback foods on wild ring-tailed lemur biology: a comparison of intact and anthropogenically disturbed habitats. Am J Phys Anthropol 140:671–686PubMedCrossRefGoogle Scholar
  91. Schleuning M, Farwig N, Peters MK, Bergsdorf T, Bleher B, Brandl R, Dalitz H, Fischer G, Freund W, Gikungu MW, Hagen M, Garcia FH, Kagezi GH, Kaib M, Kraemer M, Lung T, Naumann CM, Schaab G, Templin M, Uster D, Wägele JW, Böhning- Gaese K (2011) Forest fragmentation and selective kogging have inconsistent effects on multiple animal-mediated ecosystem processes in a tropical forest. PLoS ONE 6(11):e27785. doi:10.1371/journal.pone.0027785 PubMedCrossRefGoogle Scholar
  92. Schmid J, Ganzhorn JU (2009) Optional strategies for reduced metabolism in gray mouse lemurs. Naturwissenschaften 96:7373–7741Google Scholar
  93. Schmidt S, Stewart GR (2003) δ15N values of tropical savanna and monsoon forest species reflect root specialisations and soil nitrogen status. Oecologia 134(4):569–577PubMedGoogle Scholar
  94. Schreier BM, Harcourt AH, Coppeto SA, Somi MF (2009) Interspecific competition and niche separation in primates: a global analysis. Biotropica 41:283–291CrossRefGoogle Scholar
  95. Schulze ED, Lange OL, Ziegler H, Gebauer G (1991) Carbon and nitrogen isotope ratios of mistleotes growing on nitrogen and non-nitrogen fixing hosts and on CAM plants in the Namib desert confirm partial heterotrophy. Oecologia 88:457–462CrossRefGoogle Scholar
  96. Siemers BM, Swift SM (2006) Differences in sensory ecology contribute to resource partitioning in the bats Myotis bechsteinii and Myotis nattereri (Chiroptera: Vespertilionidae). Behav Ecol Sociobiol 59:373–380CrossRefGoogle Scholar
  97. Sponheimer M, Robinson T, Ayliffe L, Passey B, Roeder B, Shiplay L, Lopez E, Cerling T, Dearing D, Ehleringer J (2003a) An experiemental study of carbon-isotope fractionation between diet, hair, and feces of mammalian herbivores. Can J Zool 81:871–876CrossRefGoogle Scholar
  98. Sponheimer M, Robinson T, Ayliffe L, Roeder B, Hammer J, Passey B, West A, Cerling T, Dearing D, Ehleringer J (2003b) Nitrogen isotopes in mammalian herbivores: hair δ15N values from controlled feeding study. Int J Osteoarchaeol 13:80–87CrossRefGoogle Scholar
  99. Swihart RK, Gehring TM, Kolozsvary MB, Nupp TE (2003) Responses of ‘resistant’ vertebrates to habitat loss and fragmentation: the importance of niche breadth and range boundaries. Divers Distrib 9:1–18CrossRefGoogle Scholar
  100. Szpak P, White CD, Longstaffe FJ, Millaire J-F, Vásquez Sánchez VF (2013) Carbon and nitrogen isotopic survey of northern Peruvian plants: baselines for paleodietary and paleoecological studies. PLoS ONE 8(1):e53763PubMedCrossRefGoogle Scholar
  101. Tabarelli M, Mantovani W, Peres CA (1999) Effects of habitat fragmentation on plant guild structure in the montane Atlantic forest of southeastern Brazil. Biol Conserv 91:119–127CrossRefGoogle Scholar
  102. Terborgh J, Lopez L, Nuñez VP, Rao M, Shahabuddin G, Orihuela G, Riveros M, SAscanio R, Adler GH, Lambert TD et al (2001) Ecological meltdown in predator-free forest fragments. Science 294:1923–1926PubMedCrossRefGoogle Scholar
  103. Thoren S, Quietzsch F, Schwochow D, Sehen L, Meusel C, Meares K, Radespiel U (2011) Seasonal changes in feeding ecology and activity patterns of two sympatric mouse lemur species, the gray mouse lemur (Microcebus murinus) and the golden-brown mouse lemur (M. ravelobensis), in northwestern Madagascar. Int J Primatol. doi:10.1007/s10764-010-9488-1 Google Scholar
  104. van der Merwe NJ, Medina E (1991) The canopy effect, carbon isotope ratios and foodwebs in Amazonia. J Archaeol Sci 18:249–259CrossRefGoogle Scholar
  105. Voigt CC (2010) Insights into strata use of forest animals using the ‘canopy effect’. Biotropica 46(6):634–637CrossRefGoogle Scholar
  106. Vuarin P, Dammhahn M, Henry P-Y (2013) Individual flexibility in energy saving: body size and condition constrain torpor use. Funct Ecol 27:793–799CrossRefGoogle Scholar
  107. Wang L, Shaner P-JL, Macko S (2007) Foliar δ15N patterns along successional gradients at plant community and species levels. Geophys Res Lett 34(L16403). doi:10.1029/2007GL030722
  108. Werner RA, Schimdt H-L (2002) The in vivo nitrogen isotope discrimination among organic plant compounds. Phytochemistry 61:465–484PubMedCrossRefGoogle Scholar
  109. Wright PC (1997) The future of biodiversity in Madagascar: a view from Ranomafana National Park. In: Patterson BD, Goodman SM (eds) Natural change and human impact in Madagascar. Smithsonian Univ. Press, Washington, DC, pp 381–405Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • B. E. Crowley
    • 1
    • 2
  • M. B. Blanco
    • 3
    • 4
  • S. J. Arrigo-Nelson
    • 5
  • M. T. Irwin
    • 6
  1. 1.Department of GeologyUniversity of CincinnatiCincinnatiUSA
  2. 2.Department of AnthropologyUniversity of CincinnatiCincinnatiUSA
  3. 3.Duke Lemur CenterDurhamUSA
  4. 4.Department of Animal Ecology and ConservationUniversity of HamburgHamburgGermany
  5. 5.Department of Biological and Environmental SciencesCalifornia University of PennsylvaniaCaliforniaUSA
  6. 6.Department of AnthropologyNorthern Illinois UniversityDeKalbUSA

Personalised recommendations