Skip to main content
Log in

Interphyletic relationships in the use of nesting cavities: mutualism, competition and amensalism among hymenopterans and vertebrates

  • Original Paper
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

Although competition is usually assumed to be the most common interaction between closely related organisms that share limiting resources, the relationships linking distant taxa that use the same nesting sites are poorly understood. In the present study, we examine the interactions among social hymenopterans (honeybees and wasps) and vertebrates in tropical ecosystems of East Africa. By analysing the preferences of these three groups for nest boxes that were empty or previously occupied by a different taxon, we try to establish whether the relationships among them are commensal, mutualistic, competitive or amensal. Vertebrates and honeybees selected nest boxes that had previously been occupied by the other, which suggests that each obtains some benefit from the other. This relationship can be considered mutualistic, although a mutual preference for each others’ nests does not exclude a competitive interaction. Vertebrates and wasps preferred nest boxes not previously occupied by the other, which suggests that they compete for tree cavities. Finally, wasps seemed to completely refuse cavities previously used by honeybees, while the bees occupied cavities regardless of whether they had been previously used by wasps, an apparently amensal relationship. These results indicate that the interdependence between distantly related taxa is stronger and more complex than previously described, which may have important implications for population dynamics and community structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bennun LA, Njoroge P (1999) Important bird areas of Kenya. East Africa Natural History Society, Nairobi

    Google Scholar 

  • Brown JH, Reichman OJ, Davidson DW (1979) Granivory in desert ecosystems. Annu Rev Ecol Syst 10:201–227. doi:10.1146/annurev.es.10.110179.001221

    Article  Google Scholar 

  • Cockle KL, Martin K, Drever MC (2010) Supply of tree-holes limits nest density of cavity-nesting birds in primary and logged subtropical Atlantic forest. Biol Conserv 143:2851–2857. doi:10.1016/j.biocon.2010.08.002

    Article  Google Scholar 

  • Cornelius C, Cockle K, Politi N, Berkunsky I, Sandoval L, Ojeda V, Rivera L, Hunter M, Martin K (2008) Cavity-nesting birds in Neotropical forests: cavities as a potentially limiting resource. Ornitol Neotrop 19:253–268

    Google Scholar 

  • Darwin C (1859) On the origin of species by means of natural selection. Murray, London

    Google Scholar 

  • Del Hoyo J, Elliot A, Sargatal J (eds) (2001) Handbook of the birds of the world. Vol. 6. Mousebirds to hornbills. Lynx Edicions, Barcelona

    Google Scholar 

  • Diamond JM (1987) Competition among different taxa. Nature 326:241. doi:10.1038/326241a0

    Article  Google Scholar 

  • Dyer FC, Seeley TD (1994) Colony migration in the tropical honey bee Apis dorsata F (Hymenoptera: Apidae). Insect Soc 41:129–140. doi:10.1007/BF01240473

    Article  Google Scholar 

  • Goldingay RL (2009) Characteristics of tree hollows used by Australian birds and bats. Wildlife Res 36:394–409. doi:10.1071/WR08172

    Article  Google Scholar 

  • Goldingay RL (2011) Characteristics of tree hollows used by Australian arboreal and scansorial mammals. Aust J Zool 59:277–294. doi:10.1071/ZO11081

    Article  Google Scholar 

  • Gory G (2011) Commensalism between two gecko species (Hemidactylus turcinus and Tarentola mauritanica) and the common swift (Apus apus). Alauda 79:233–236

    Google Scholar 

  • Hochberg ME, Lawton JH (1990) Competition between kingdoms. Trends Ecol Evol 5:367–371. doi:10.1016/0169-5347(90)90097-W

    Article  PubMed  CAS  Google Scholar 

  • Juskaitis R (1995) Relations between common dormice (Muscardinus avellanarius) and other occupant of bird nest-boxes in Lithuania. Folia Zool 44:289–296

    Google Scholar 

  • Kastberger G, Schmelzer E, Kranner L (2008) Social waves in giant honeybees repel hornets. PLoS One 3:e3141. doi:10.1371/journal.pone.0003141

    Article  PubMed  Google Scholar 

  • King LE, Lawrence A, Douglas-Hamilton I, Vollrath F (2009) Beehive fence deters crop-raiding elephants. Afr J Ecol 47:131–137. doi:10.1111/j.1365-2028.2009.01114.x

    Article  Google Scholar 

  • King LE, Soltis J, Douglas-Hamilton I, Savage A, Vollrath F (2010) Bee threat elicits alarm call in African elephants. PLoS One 5:e10346. doi:10.1371/journal.pone.0010346

    Article  PubMed  Google Scholar 

  • Kodric-Brown A, Brown JH (1979) Competition between distantly related taxa in the coevolution of plants and pollinators. Am Zool 19:115–127

    Google Scholar 

  • Koeniger N, Koeniger G (1980) Observations and experiments on migration and dance communication of Apis dorsata in Sri Lanka. J Apicult Res 19:21–34

    Google Scholar 

  • Lafuma L, Lambrechts MM, Raymond M (2001) Aromatic plants in bird nests as a protection against blood-sucking flying insects? Behav Process 56:113–120. doi:10.1016/S0376-6357(01)00191-7

    Article  Google Scholar 

  • Langowska A, Ekner A, Skorka P, Tovolka M, Tryjanowski P (2010) Nest-site tenacity and dispersal patterns of Vespa crabro colonies located in bird nest-boxes. Sociobiology 56:375–382

    Google Scholar 

  • Martín-Vivaldi M, Pena A, Peralta-Sánchez JM, Sánchez L, Ananou S, Ruiz-Rodríguez M, Soler JJ (2010) Antimicrobial chemicals in hoopoe preen secretions are produced by symbiotic bacteria. Proc Biol Sci 277:123–130. doi:10.1098/rspb.2009.1377

    Article  PubMed  Google Scholar 

  • McGlynn TP (2012) The ecology of nest movement in social insects. Annu Rev Entomol 57:291–308. doi:10.1146/annurev-ento-120710-100708

    Article  PubMed  CAS  Google Scholar 

  • Mennerat A, Mirleau P, Blondel J, Perret P, Lambrechts MM, Heeb P (2009) Aromatic plants in nests of the blue tit Cyanistes caeruleus protect chicks from bacteria. Oecologia 161:849–855. doi:10.1007/s00442-009-1418-6

    Article  PubMed  Google Scholar 

  • Morin PJ, Lawler SP, Johnson EA (1988) Competition between aquatic insects and vertebrates—interaction strength and higher-order interactions. Ecology 69:1401–1409. doi:10.2307/1941637

    Article  Google Scholar 

  • Newton I (1994) The role of nest sites in limiting the numbers of hole nesting birds: a review. Biol Conserv 70:265–276. doi:10.1016/0006-3207(94)90172-4

    Article  Google Scholar 

  • Ono M, Igarashi T, Ohno E, Sasaki M (1995) Unusual thermal defense by a honeybee against mass attack by hornets. Nature 377:334–336. doi:10.1038/377334a0

    Article  CAS  Google Scholar 

  • Petit C, Hossaert-McKey M, Perret P, Blondel J, Lambrechts MM (2002) Blue tits use selected plants and olfaction to maintain an aromatic environment for nestlings. Ecol Lett 5:585–589. doi:10.1046/j.1461-0248.2002.00361.x

    Article  Google Scholar 

  • Prange S, Nelson DH (2007) Use of small-volume nest boxes by Apis mellifera L. (European honey bees) in Alabama. Sotheast Nat 6:370–375. doi:10.1656/1528-7092(2007)6[370:UOSNBB]2.0.CO;2

    Article  Google Scholar 

  • Rajchard J (2010) Biologically active substances of bird skin: a review. Vet Med-Czech 55:413–421

    CAS  Google Scholar 

  • Rhodes M, Jones D (2011) The use of bat boxes by insectivorous bats and other fauna in the greater Brisbane region. In: Law B, Eby P, Lunney D, Lumsdenpp L (eds) Biology and conservation of Australasian bats. Royal Zoological Society of New South Wales. Griffith University, Griffith, pp 424–442

    Chapter  Google Scholar 

  • Robles H, Ciudad C, Matthysen E (2012) Responses to experimental reduction and increase of cavities by a secondary cavity-nesting bird community in cavity-rich Pyrenean oak forests. Forest Ecol Manag 277:46–53. doi:10.1016/j.foreco.2012.04.017

    Article  Google Scholar 

  • Schneider SS, McNally LC (1992) Factors influencing seasonal absconding in colonies of the African honey bee Apis mellifera scutellata. Insect Soc 39:403–423. doi:10.1007/BF01240624

    Article  Google Scholar 

  • Schumer M, Birger R, Tantipathananandh C, Arisano J, Maggioni N, Mwangi P (2013) Infestation by a common parasite is correlated with ant symbiont identity in a plant–ant mutualism. Biotropica 45:276–279. doi:10.1111/btp

    Article  Google Scholar 

  • Simone-Finstrom M, Spivak M (2010) Propolis and bee health: the natural history and significance of resin use by honey bees. Apidologie 41:295–311. doi:10.1051/apido/2010016

    Article  Google Scholar 

  • Slomczynski R, Kalinski A, Wawrzyniak J, Banbura M, Skwarska J, Zielinski P, Banbura J (2006) Effects of experimental reduction in nest micro-parasite and macro-parasite loads on nestling hemoglobin level in blue tits Parus caeruleus. Acta Oecol 30:223–227. doi:10.1016/j.actao.2006.04.003

    Article  Google Scholar 

  • Sonnentag PJ, Jeanne RL (2009) Initiation of absconding-swarm emigration in the social wasp Polybia occidentalis. J Insect Sci 9:1–11. doi:10.1673/031.009.1101

    Article  Google Scholar 

  • Stanback M, Mercadante A, Anderson W, Burke H, Jameson R (2009) Nest site competition between cavity nesting passerines and golden paper wasps Polistes fuscatus. J Avian Biol 40:650–652. doi:10.1111/j.1600-048X.2009.04797.x

    Article  Google Scholar 

  • Sugahara M, Sakamoto F (2009) Heat and carbon dioxide generated by honeybees jointly act to kill hornets. Naturwissenchaften 96:1133–1136. doi:10.1007/s00114-009-0575-0

    Article  CAS  Google Scholar 

  • Supa-Amornkul S, Wiyakrutta S, Poonswad P (2011) Wood decay fungi in hornbill nest cavities in Khao Yai National Park, Thailand. Raffles B Zool 24:95–113

    Google Scholar 

  • Tomas G, Merino S, Martinez-de la Puente J, Moreno J, Morales J, Lobato E, Rivero-de Aguilar J, del Cerro S (2012) Interacting effects of aromatic plants and female age on nest-dwelling ectoparasites and blood-sucking flies in avian nests. Behav Process 90:246–253. doi:10.1016/j.beproc.2012.02.003

    Article  CAS  Google Scholar 

  • Townsend HM, Huyvaert KP, Hodum PJ, Anderson DJ (2002) Nesting distributions of Galapagos boobies (Aves: Sulidae): an apparent case of amensalism. Oecologia 132:419–427. doi:10.1007/s00442-002-0992-7

    Article  Google Scholar 

  • Van Balen JH, Booy CJH, van Franeker JA, Osieck ER (1982) Studies on hole-nesting birds in natural nest sites. 1. Availability and occupation of natural nest sites. Ardea 70:1–24

    Google Scholar 

  • Vaudo AD, Ellis JD, Cambray GA, Hill M (2012) Honey bee (Apis mellifera capensis/A. m. scutellata hybrid) nesting behavior in the Eastern Cape, South Africa. Insect Soc 59:323–331. doi:10.1007/s00040-012-0223-0

    Article  Google Scholar 

  • Veiga JP, Wamiti W, Polo V, Muchai M (2013) Interaction between distant taxa in the use of tree cavities in African ecosystems: a study using nest-boxes. J Trop Ecol 29:187–197. doi:10.1017/S026646741300014X

    Article  Google Scholar 

  • Weldon PJ, Rappole JH (1997) A survey of birds odorous or unpalatable to humans: possible indications of chemical defense. J Chem Ecol 23:2609–2633

    Article  CAS  Google Scholar 

  • Wesolowski T (2007) Lessons from long-term hole-nester studies in a primeval temperate forest. J Ornithol 148:S395–S405. doi:10.1007/s10336-007-0198-1

    Article  Google Scholar 

  • Wiebe KL (2011) Nest sites as limiting resources for cavity-nesting birds in mature forest ecosystems: a review of the evidence. J Field Ornithol 82:239–248. doi:10.1111/j.1557-9263.2011.00327.x

    Google Scholar 

Download references

Acknowledgements

We are greatly indebted to the following institutions and landowners for allowing us carry out this study on their properties: Kenya Wildlife Service, Samburu County Council, Lewa Wildlife Conservancy, Mpala Research Centre and, in Naivasha, Oserian, Little Owls Sanctuary, Elsamere Field Study Centre, Crater Lake Sanctuary and Camp Carnelly’s. Special thanks to Ms. Sarah Higgins for sharing her weather data. We cannot forget the kind assistance of the field assistants from the Ornithology and Invertebrate Zoology Sections of the National Museums of Kenya and from all the field stations. Many other people, not mentioned here, helped in various valuable ways. We thank you all. We also thank two anonymous reviewers of the manuscript for their constructive criticism. This research has been carried out with the financial support from the Spanish Government, projects CGL2004-00126/BOS, CGL2005-05611-C02-01, CGL2008-02843 and CGL2011-28095.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José P. Veiga.

Additional information

Communicated by: Sven Thatje

Rights and permissions

Reprints and permissions

About this article

Cite this article

Veiga, J.P., Wamiti, W., Polo, V. et al. Interphyletic relationships in the use of nesting cavities: mutualism, competition and amensalism among hymenopterans and vertebrates. Naturwissenschaften 100, 827–834 (2013). https://doi.org/10.1007/s00114-013-1082-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-013-1082-x

Keywords

Navigation