, Volume 100, Issue 7, pp 621–631 | Cite as

The effect of flower-like and non-flower-like visual properties on choice of unrewarding patterns by bumblebees

Original Paper


How do distinct visual stimuli help bumblebees discover flowers before they have experienced any reward outside of their nest? Two visual floral properties, type of a pattern (concentric vs radial) and its position on unrewarding artificial flowers (central vs peripheral on corolla), were manipulated in two experiments. Both visual properties showed significant effects on floral choice. When pitted against each other, pattern was more important than position. Experiment 1 shows a significant effect of concentric pattern position, and experiment 2 shows a significant preference towards radial patterns regardless of their position. These results show that the presence of markings at the center of a flower are not so important as the presence of markings that will direct bees there.


Visual properties Bumblebees Visual stimuli Flowers 


  1. Avarguès-Weber A, Deisig N, Giurfa M (2011) Visual cognition in social insects. Annu Rev Entomol 56:423–443PubMedCrossRefGoogle Scholar
  2. Avarguès-Weber A, Portelli G, Benard J, Dyer A, Giurfa M (2010) Configural processing enables discrimination and categorization of face-like stimuli in honeybees. J Exp Biol 213:593–601PubMedCrossRefGoogle Scholar
  3. Avarguès-Weber A, Dyer AG, Giurfa M (2010) Conceptualization of above and below relationships by an insect. Proc R Soc B 278:898–905PubMedCrossRefGoogle Scholar
  4. Benard J, Stach S, Giurfa M (2006) Categorization of visual stimuli in the honeybee Apis mellifera. Anim Cogn 9:257–270PubMedCrossRefGoogle Scholar
  5. Brodbeck DR, Shettleworth SJ (1995) Matching location and color of a compound stimulus: comparison of a food-storing and a nonstoring bird species. J Exp Psychol: Anim Behav Process 21:64–77CrossRefGoogle Scholar
  6. Brown MF, Sayde JM (2013) Same/different discrimination by bumblebee colonies. Anim Cogn 16:117–125PubMedCrossRefGoogle Scholar
  7. Chittka L, Walker J (2006) Do bees like Van Gogh’s Sunflowers? Opt Laser Technol 38:323–328CrossRefGoogle Scholar
  8. Chittka L, Dyer AG, Bock F, Dornhaus A (2003) Bees trade off foraging speed for accuracy. Nat 424:388CrossRefGoogle Scholar
  9. Church DL, Plowright CMS (2005) Spatial encoding by bumblebees (Bombus impatiens) of a reward within an artificial flower array. Anim Cogn 9:131–140CrossRefGoogle Scholar
  10. Dafni A, Kevan PG (1996) Floral symmetry and nectar guides: ontogenetic constraints from floral development, colour pattern rules and functional significance. Bot J Linn Soc 120:371–377CrossRefGoogle Scholar
  11. Desurmont GA, Weston PA (2010) Stimuli associated with viburnum leaf beetle (Pyrrhalta viburni) aggregative oviposition behavior. Entomol Exp Appl 135:245–251CrossRefGoogle Scholar
  12. Döring TF, Chittka L (2011) How human are insects, and does it matter. Formos Entomol 31:85–99Google Scholar
  13. Dyer AG, Griffiths DW (2012) Seeing near and seeing far; behavioural evidence for dual mechanisms of pattern vision in the honeybee (Apis mellifera). J Exp Biol 215:397–404PubMedCrossRefGoogle Scholar
  14. Faber T, Joerges J, Menzel R (1999) Associative learning modifies neural representations of odors in the insect brain. Nat Neurosci 2:74–78PubMedCrossRefGoogle Scholar
  15. Forrest J, Thomson JD (2009) Background complexity affects colour preference in bumblebees. Naturwissenschaften96:921–925PubMedCrossRefGoogle Scholar
  16. García LV (2004) Escaping the Bonferroni iron claw in ecological studies. Oikos 105:657–663CrossRefGoogle Scholar
  17. Giurfa M, Núñez J, Chittka L, Menzel R (1995) Colour preferences of flower-naive honeybees. J Comp Physiol A 177:247–259CrossRefGoogle Scholar
  18. Giurfa M, Zhang S, Jenett A, Menzel R, Srinivasan MV (2001) The concepts of sameness and difference in an insect. Nat 410:930–933CrossRefGoogle Scholar
  19. Gumbert A (2000) Color choices by bumble bees (Bombus terrestris): Innate preferences and generalization after learning. Behav Ecol Sociobiol 48:36–43CrossRefGoogle Scholar
  20. Heuschen B, Gumbert A, Lunau K (2005) A generalised mimicry system involving angiosperm flower colour, pollen and bumblebees’ innate colour preferences. Plant Syst Evol 252:121–137CrossRefGoogle Scholar
  21. Horridge AG (2009) What does the honeybee see? And how do we know? A critique of scientific reason. ANU E, CanberraGoogle Scholar
  22. Ings TC, Raine NE, Chittka L (2009) A population comparison of the strength and persistence of innate colour preference and learning speed in the bumblebee Bombus terrestris. Behav Ecol Sociobiol 63:1207–1218CrossRefGoogle Scholar
  23. Land MF (1999) Motion and vision: why animals move their eyes. J Comp Physiol A1 85:341–352PubMedCrossRefGoogle Scholar
  24. Land MF, Fernald RD (1992) The evolution of eyes. Annu Rev Neurosci 15:1–29PubMedCrossRefGoogle Scholar
  25. Leadbeater E, Chittka L (2007) The dynamics of social learning in an insect model, the bumblebee (Bombus terrestris). Behav Ecol Sociobiol 61:1789–1796CrossRefGoogle Scholar
  26. Lehrer M, Horridge GA, Zhang SW, Gadagkar R (1995) Shape vision in bees: Innate preference for flower-like patterns. Philos Trans Roy Soc Lond B 347:123–137CrossRefGoogle Scholar
  27. Leonard AS, Papaj DR (2011) X marks the spot: the possible benefits of nectar guides to bees and plants. Funct Ecol 25:1293–1301CrossRefGoogle Scholar
  28. Lieberman MD, Cunningham WA (2009) Type I and type II error concerns in fMRI research: re-balancing the scale. Soc Cogn Affect Neurosci 4:423–428PubMedCrossRefGoogle Scholar
  29. Lihoreau M, Raine NE, Reynolds AM, Stelzer RJ, Lim KS, Smith AD, Osborne JL, Chittka L (2012) Radar tracking and motion-sensitive cameras on flowers reveal the development of pollinator multi-destination routes over large spatial scales. PLoS Biol 10:e1001392PubMedCrossRefGoogle Scholar
  30. Lunau K (2007) Stamens and mimic stamens as components of floral colour patterns. Bot Jahrb 127:13–41CrossRefGoogle Scholar
  31. Lunau K (1992) Innate recognition of flowers by bumble bees: orientation of antennae to visual stamen signals. Can J Zool 70:2139–2144CrossRefGoogle Scholar
  32. Lunau K (1990) Colour saturation triggers innate reactions to flower signals: Flower dummy experiments with bumblebees. J Comp Physiol A 166:827–834CrossRefGoogle Scholar
  33. Lunau K, Fieselmann G, Heuschen B, Loo A (2006) Visual targeting of components of floral colour patterns in flower-naïve bumblebees (Bombus terrestris; Apidae). Naturwissenschaften 93:325–328PubMedCrossRefGoogle Scholar
  34. Lunau K, Unseld K, Wolter F (2009) Visual detection of diminutive floral guides in the bumblebee Bombus terrestris and in the honeybee Apis mellifera. J Comp Physiol 195:1121–1130CrossRefGoogle Scholar
  35. Lunau K, Wacht S, Chittka L (1996) Colour choices of naive bumble bees and their implications for colour perception. J Comp Physiol A 178:477–489CrossRefGoogle Scholar
  36. Medel R, Botto-Mahan C, Kalin-Arroyo M (2003) Pollinator-mediated selection on the nectar guide phenotype in the Andean monkey flower, Mimulus luteus. Ecol 84:1721–1732CrossRefGoogle Scholar
  37. Molet M, Chittka L, Raine NE (2009) How floral odours are learned inside the bumblebee (Bombus terrestris) nest. Naturwissenschaften 96:213–219PubMedCrossRefGoogle Scholar
  38. Molet M, Chittka L, Stelzer RJ, Streit S, Raine NE (2008) Colony nutritional status modulates worker responses to foraging recruitment pheromone in the bumblebee Bombus terrestris. Behav Ecol Sociobiol 62:1919–1926CrossRefGoogle Scholar
  39. Møller AP, Sorci G (1998) Insect preference for symmetrical artificial flowers. Oecologia 114:37–42CrossRefGoogle Scholar
  40. Nakagawa S (2004) A farewell to Bonferroni: the problems of low statistical power and publication bias. Behav Ecol 15:1044–1045CrossRefGoogle Scholar
  41. Ohashi K, D’Souza D, Thomson JD (2010) An automated system for tracking and identifying individual nectar foragers at multiple feeders. Behav Ecol Sociobiol 64:891–897CrossRefGoogle Scholar
  42. Penny JHJ (1983) Nectar guide colour contrast: a possible relationship with pollination strategy. New Phytol 95:707–721CrossRefGoogle Scholar
  43. Perneger TV (1998) What’s wrong with Bonferroni adjustments. Brit Med J 316:1236–1238PubMedCrossRefGoogle Scholar
  44. Plowright CMS, Simonds VM, Butler MA (2006) How bumblebees first find flowers: habituation of visual pattern preferences, spontaneous recovery, and dishabituation. Learn Motiv 37:66–78CrossRefGoogle Scholar
  45. Plowright CMS, Evans SA, Chew Leung J, Collin CA (2011) The preference for symmetry in flower-naïve and not-so-naïve bumblebees. Learn Motiv 42:76–83CrossRefGoogle Scholar
  46. Pohl M, Lunau K (2007) Modification of the innate antennal reaction at floral guides in experienced bumblebees, Bombus terrestris (Hymenoptera: Apidae). Entomol Gen 29:111–123CrossRefGoogle Scholar
  47. Raine NE, Chittka L (2007) The adaptive significance of sensory bias in a foraging context: floral colour oreferences in the bumblebee Bombus terrestris. PLoS ONE 2:e556PubMedCrossRefGoogle Scholar
  48. Robinson EJH, Feinerman O, Franks NR (2012) Experience, corpulence and decision making in ant foraging. J Exp Biol 215:2653–2659PubMedCrossRefGoogle Scholar
  49. Rodríguez I, Gumbert A, Hempel de Ibarra N, Kunze J, Giurfa M (2004) Symmetry is in the eye of the beeholder: innate preference for bilateral symmetry in flower-naïve bumblebees. Naturwissenschaften 91:374–377PubMedGoogle Scholar
  50. Séguin FR, Plowright CMS (2008) Assessment of pattern preferences by flower-naïve bumblebees. Apidologie 39:215–224CrossRefGoogle Scholar
  51. Silcox DE, Doskocil JP, Sorenson CE, Brandenburg RL (2011) Radio frequency identification tagging: a novel approach to monitoring surface and subterranean insects. Am Entomol 57:86–93Google Scholar
  52. Simonds V, Plowright CMS (2004) How do bumblebees first find flowers? Unlearned approach responses and habituation. Anim Behav 67:379–386CrossRefGoogle Scholar
  53. Sokal RR, Rohlf FJ (2003) Biometry. WH Freeman, New YorkGoogle Scholar
  54. Stach S, Giurfa M (2005) The influence of training length on generalization of visual feature assemblies in honeybees. Behav Brain Res 161:8–17PubMedCrossRefGoogle Scholar
  55. Stach S, Benard J, Giurfa M (2004) Local-feature assembling in visual pattern recognition and generalization in honeybees. Nat 429:758–761CrossRefGoogle Scholar
  56. Streit SS, Bock FF, Pirk CW, Tautz JJ (2003) Automatic life-long monitoring of individual insect behaviour now possible. Zool 106:169–171CrossRefGoogle Scholar
  57. Sumner S, Lucas E, Barker J, Isaac N (2007) Radio-tagging technology reveals extreme nest-drifting behavior in a eusocial insect. Curr Biol 17:140–145PubMedCrossRefGoogle Scholar
  58. von Frisch K (1914) Der farbensinn und formensinn der biene. Jena, Verlag von Gustav FischerGoogle Scholar
  59. Waser NM, Price MV (1985) The effect of nectar guides on pollinator preference: experimental studies with a montane herb. Oecologia 67:121–126CrossRefGoogle Scholar
  60. Wertlen AM, Niggerügge C, Vorobyev M, Hempel de Ibarra N (2008) Detection of patches of coloured discs by bees. J Exp Biol 211:2101–2104PubMedCrossRefGoogle Scholar
  61. Zhang K, Guo JZ, Peng Y, Xi W, Guo A (2007) Dopamine-mushroom body circuit regulates saliency-based decision-making in drosophila. Sci 316:1901–1904CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Levente L. Orbán
    • 1
  • Catherine M. S. Plowright
    • 1
  1. 1.School of PsychologyUniversity of OttawaOttawaCanada

Personalised recommendations