Skip to main content
Log in

A mandible arresting system in neotropical social wasps (Vespidae; Polistinae): structural diversity within homogeneous functionality

  • Original Paper
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

Microtrichia are epidermal protuberances that may serve as temporary adhesive devices. Several insects possess these structures; however, they have not previously been reported in social wasps. With scanning electron microscopy, we characterize the shape and abundance of microtrichia in ten species of social wasps (Vespidae: Polistinae) and three species of related taxa (Vespidae: Eumeninae, Pompilidae, and Scoliidae). Semi-thin sections of the head of Leipomeles spilogastra and Apoica albimacula were also studied. We found microtrichia on a thin, flexible membrane connected to the mandible in all the Vespidae specimens. The flexible membrane can be divided into three regions: the basal region that covers the mandibular mesial emargination, the medial region located around the height of the mandibular condyles, and the distal region that appears anterior to the apodeme folding. Basal and distal regions of the membrane are extensively covered by microtrichia while the medial region has either less microtrichia or is entirely devoid of them. The shape and density of the microtrichia differed between species, and these traits are unrelated with nest material construction or phylogenetic closeness. We propose that the microtrichial membrane described is a passive mechanism to keep the wasps’ mandibles retracted through a mechanical interlocking system. It is possible that this energy-saving mechanism is present in other mandibulate insects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Acorn JH, Ball GE (1990) The mandibles of some adult ground beetles: structure, function, and the evolution of herbivory (Coleoptera: Carabidae). Can J Zool 69:638–650

    Article  Google Scholar 

  • Ball GE, Acorn JH, Shpeley D (2011) Mandibles and labrum-epipharynx of tiger beetles: basic structure and evolution (Coleoptera, Carabidae, Cicindelidae). ZooKeys 147:39–83

    Article  PubMed  Google Scholar 

  • Baum E, Dressler C, Beutel RG (2007) Head structures of Karoophasma sp. (Hexapoda, Mantophasmatodea) with phylogenetic implications. J Zool Syst Evol Res 45:104–119

    Article  Google Scholar 

  • Betz O, Thayer MK, Newton AF (2003) Comparative morphology and evolutionary pathways of the mouthparts in spore-feeding Staphylinoidea (Coleoptera). Acta Zool 84:179–238

    Article  Google Scholar 

  • Buhl PN (2009) New species of Platygastridae from Vietnam (Hymenoptera: Platygastroidea). Zool Med Leiden 83:877–918

    Google Scholar 

  • Burrows M (2009) Jumping performance of plant hoppers (Hemiptera, Issidae). J Exp Biol 212:2844–2855

    Article  PubMed  Google Scholar 

  • Cole MR, Hansell MH, Seath CJ (2001) A quantitative study of the physical properties of nest paper in three species of Vespinae wasps (Hymenoptera, Vespidae). Ins Soc 48:33–39

    Article  Google Scholar 

  • Common IF (1969) A wing-locking or stridulatory device in Lepidoptera. J Aust Ent Soc 8:121–125

    Article  Google Scholar 

  • Cribb B, Stewart A, Huang H, Truss R, Noller B, Rasch R et al (2008) Insect mandibles—comparative mechanical properties and links with metal incorporation. Naturwissenschaften 95:17–23

    Article  PubMed  CAS  Google Scholar 

  • Downing H (1991) In: Ross K, Matthews R (eds) The function and evolution of exocrine glands. The social biology of wasps, Ithaca, pp 540–569

    Google Scholar 

  • Fernández F (2006) Familias Scoliidae y Pompilidae. In: Fernández F, Sharkey M (eds) Introducción a los Hymenoptera de la Región Neotropical. Sociedad Colombiana de Entomología y Universidad Nacional de Colombia, Bogotá, pp 557–564

    Google Scholar 

  • Gorb S (1997) Porous channels in the cuticle of the head-arrester system in dragon/damselflies (Insecta: Odonata). Micros Res Techniq 37:583–591

    Article  CAS  Google Scholar 

  • Gorb S (1998) Frictional surfaces of the elytra-to-body arresting mechanism in tenebrionid beetles (Coleoptera: Tenebrionidae): design of co-opted fields of microtrichia and cuticle. Int J Ins Morphol 16:205–225

    Article  Google Scholar 

  • Gorb S (1999) Evolution of the dragonfly head-arresting system. Proc Roy Soc London 266:525–535

    Article  Google Scholar 

  • Gorb S (2002) Attachment devices of insect cuticle. Kluwer Academic Publishers, New York

    Google Scholar 

  • Gorb S (2008) Biological attachment devices: exploring nature’s diversity for biomimetics. Philos T Roy Soc A 366:1557–1574

    Article  Google Scholar 

  • Gorb S, Beutel RG (2000) Head-capsule design and mandible control in beetle larvae: a three-dimensional approach. J Morph 244:1–14

    Article  PubMed  CAS  Google Scholar 

  • Gronenberg W (1996) The trap-jaw mechanism in the dacetine ants Daceton armigerum and Strumigenys sp. J Exp Biol 199:2021–2033

    PubMed  Google Scholar 

  • Gronenberg W, Paul J, Just S, Hölldobler B (1997) Mandible muscle fibers in ants: fast or powerful? Cell Tissue Res 289:347–361

    Article  PubMed  CAS  Google Scholar 

  • Hochuli D (2001) Insect herbivory and ontogeny: how do growth and development influence feeding behavior, morphology and host use? Aust Ecol 26:563–570

    Article  Google Scholar 

  • Huggert L, Massner L (1983) Two new genera of African scelionid wasps (Hymenoptera, Proctotrupoidea: Scelionidae). Insect Syst Evol 14:173–185

    Article  Google Scholar 

  • Kanmiya K (1998) Acoustic studies on the mechanism of sound production in the mating songs of the melon fly, Dacus cucurbitae Coquillett (Diptera: Tephritidae). J Ethol 6:143–151

    Article  Google Scholar 

  • Lynch M, Hill W (1986) Phenotypic evolution by neutral mutation. Evolution 40:915–935

    Article  Google Scholar 

  • Newton AF (1982) Redefinition, revised phylogeny, and relationships of Pseudopsinae (Coleoptera, Staphylinidae). Am Mus Novit 2743:1–13

    Google Scholar 

  • Ortega-Blanco J, Rasnitsyn AP, Delclòs X (2010) A New Family of Ceraphronoid Wasps from Early Cretaceous Álava Amber, Spain. Acta Palaeontol Pol 55:265–276

    Article  Google Scholar 

  • Paul J, Gronenberg W (1999) Optimizing force and velocity: mandible muscle fiber attachments in ants. J Exp Biol 202:797–808

    PubMed  Google Scholar 

  • Paul J (2001) Mandible movements in ants. Comp Biochem Physio Part A 131:7–20

    Article  CAS  Google Scholar 

  • Paul J, Gronenberg W (2002) Motor control of the mandible closer muscle in ants. J Insect Physiol 48:255–267

    Article  PubMed  CAS  Google Scholar 

  • Pohl H, Beutel RG (2004) Fine structure of adhesive devices of Strepsiptera (Insecta). Arthropod Struct Dev 33:31–43

    Article  PubMed  Google Scholar 

  • Pohl H, Niehuis O, Gloyna K, Misof B, Beutel RG (2012) A new species of Mengenilla (Insecta, Strepsiptera) from Tunisia. ZooKeys 198:79–101

    Article  PubMed  Google Scholar 

  • Quicke D, Wyeth P, Fawke J, Basibuyuk H, Vincent J (1998) Manganese and zinc in the ovipositors and mandibles of hymenopterous insects. Zool J Lin Soc 124:387–396

    Article  Google Scholar 

  • Sarmiento C (2004) A test of adaptive hypotheses: Mandibular traits, nest construction materials, and feeding habits in neotropical social wasps (Vespidae, Polistinae). Ins Soc 51:387–391

    Article  Google Scholar 

  • Schmidt C (2004) Morphological and Functional Diversity of Ant Mandibles. Tree of life web page http://tolweb.org/treehouses/?treehouse_id=2482. Accessed 12 July 2012

  • Schrott A (1986) Vergleichende Morphologie und Ultrastruktur des Cenchrus-Dornenfeldapparates bei Pflanzenwespen (Insecta: Hymenoptera, Symphyta). Ber naturwiss-Med Ver Innsbruck 73:159–168

    Google Scholar 

  • Silveira OT, Santos JNA (2011) Comparative morphology of the mandibles of female polistine social wasps (Hymenoptera, Vespidae, Polistinae). Rev Bras Entomol 55:479–500

    Article  Google Scholar 

  • Snodgrass RE (1935) Principles of insect morphology. McGraw-Hill, New York

    Google Scholar 

  • Sukontason K, Sukontason KL, Piangjai S, Boonchu N, Chaiwong T, Vogtsberger RC (2003) Mouthparts of Megaselia scalaris (Loew) (Diptera: Phoridae). Micron 34:345–350

    Article  PubMed  Google Scholar 

  • Vilhelmsen L (1999) The occipital region in the basal Hymenoptera (Insecta): a reappraisal. Zool Scrip 28:75–85

    Article  Google Scholar 

  • Vilhelmsen L (2003) Flexible ovipositor sheaths in parasitoid Hymenoptera (Insecta). Arthropod Struct Dev 32:277–287

    Article  PubMed  Google Scholar 

  • Wainwright P (2007) Functional versus morphological diversity in macroevolution. Ann Rev Ecol Evol Syst 38:381–401

    Article  Google Scholar 

  • Wenzel J (1998) A generic key to the nest of hornets, yellowjackets and paper wasp worldwide (Vespidae: Vespinae, Polistinae). Am Mus Novit 3224:1–40

    Google Scholar 

  • Wiebes JT (1979) Fig wasps from Gabon: new species of Agaon (Agaonidae) and Phagoblastus (Torymidae) (Hymenoptera: Chalcidoidea). Proc Kon Ned Akad v Wetensch: 391–400

  • Young R, Haselkorn T, Badyaev A (2007) Functional equivalence of morphologies enables morphological and ecological diversity. Evolution 61:2480–2492

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Johan Billen (Katholieke University Leuven) and Andrea Penagos (National University of Colombia) for the valuable histological sections of L. spilogastra and A. albimacula. Also to L. Vilhelmsen (University of Copenhagen), O. Silveira (Emílio Goeldi Museum of Pará), Christopher K. Starr (University of the West Indies), and the other reviewers for their useful comments. We also thank Tiffany Harwell for her advice regarding language use and Marcela Morales for line drawings. This research was supported by the grants of Colombian Society of Entomology (SOCOLEN) and the Research Division, Bogotá branch (DIB) of the National University of Colombia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos E. Sarmiento.

Additional information

Communicated by: Sven Thatje

Rights and permissions

Reprints and permissions

About this article

Cite this article

López-Cubillos, S., Sarmiento, C.E. A mandible arresting system in neotropical social wasps (Vespidae; Polistinae): structural diversity within homogeneous functionality. Naturwissenschaften 100, 429–435 (2013). https://doi.org/10.1007/s00114-013-1041-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-013-1041-6

Keywords

Navigation