A new phylogeny for basal Trechnotheria and Cladotheria and affinities of South American endemic Late Cretaceous mammals

Abstract

The endemic South American mammals Meridiolestida, considered previously as dryolestoid cladotherians, are found to be non-cladotherian trechnotherians related to spalacotheriid symmetrodontans based on a parsimony analysis of 137 morphological characters among 44 taxa. Spalacotheriidae is the sister taxon to Meridiolestida, and the latter clade is derived from a primitive spalacolestine that migrated to South America from North America at the beginning of the Late Cretaceous. Meridiolestida survived until the early Paleocene (Peligrotherium) and early Miocene (Necrolestes) in South America, and their extinction is probably linked to the increasing competition with metatherian and eutherian tribosphenic mammals. The clade Meridiolestida plus Spalacotheriidae is the sister taxon to Cladotheria and forms a new clade Alethinotheria. Alethinotheria and its sister taxon Zhangheotheria, new clade (Zhangheotheriidae plus basal taxa), comprise Trechnotheria. Cladotheria is divided into Zatheria (plus stem taxa, including Amphitherium) and Dryolestida, including Dryolestidae and a paraphyletic array of basal dryolestidans (formerly classified as “Paurodontidae”). The South American Vincelestes and Groebertherium are basal dryolestidans.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Ameghino F (1891) Nuevos restos de mamíferos fósiles descubiertos por Carlos Ameghino en el Eoceno inferior de la Patagonia austral. Especies nuevas, adiciones y correciones. Rev Arg Hist Nat 1:289–328

    Google Scholar 

  2. Archibald JD, Averianov AO (2005) Mammalian faunal succession in the Cretaceous of the Kyzylkum Desert. J Mamm Evol 12:9–22

    Article  Google Scholar 

  3. Archibald JD, Averianov AO (2012) Phylogenetic analysis, taxonomic revision, and dental ontogeny of the Cretaceous Zhelestidae (Mammalia: Eutheria). Zool J Linn Soc 164:361–426

    Article  Google Scholar 

  4. Asher RJ, Sánchez-Villagra MR (2005) Locking yourself out: diversity among dentally zalambdodont therian mammals. J Mamm Evol 12:265–282

    Article  Google Scholar 

  5. Asher RJ, Horovitz I, Martin T, Sánchez-Villagra MR (2007) Neither a rodent nor a platypus: a reexamination of Necrolestes patagonensis Ameghino. Am Mus Nov 3546:1–40

    Article  Google Scholar 

  6. Averianov AO (2002) Early Cretaceous “symmetrodont” mammal Gobiotheriodon from Mongolia and the classification of “Symmetrodonta.” Acta Palaeontol Pol 47:705–716

    Google Scholar 

  7. Averianov AO, Archibald JD (2003) Mammals from the Upper Cretaceous Aitym Formation, Kyzylkum Desert, Uzbekistan. Cretac Res 24:171–191

    Article  Google Scholar 

  8. Averianov AO, Lopatin AV (2008) “Protocone” in a pretribosphenic mammal and upper dentition of tinodontid “symmetrodontans.” J Vertebr Paleontol 28:548–552

    Article  Google Scholar 

  9. Averianov AO, Lopatin AV (2011) Phylogeny of triconodonts and symmetrodonts and the origin of extant mammals. Dokl Biol Sci 436:32–35

    PubMed  CAS  Article  Google Scholar 

  10. Averianov AO, Archibald JD, Ekdale EG (2010a) New material of the Late Cretaceous deltatheroidan mammal Sulestes from Uzbekistan and phylogenetic reassessment of the metatherian–eutherian dichotomy. J Syst Palaeontol 8:301–330

    Article  Google Scholar 

  11. Averianov AO, Lopatin AV, Krasnolutskii SA, Ivantsov SV (2010b) New docodontans from the Middle Jurassic of Siberia and reanalysis of Docodonta interrelationships. Proc Zool Inst Russ Acad Sci 314:121–148

    Google Scholar 

  12. Bonaparte JF (1986) Sobre Mesungulatum houssayi y nuevos mamíferos cretacicos de Patagonia. Actas IV Congreso Argentino de Paleontología y Bioestratigrafía 2:48–61

    Google Scholar 

  13. Bonaparte JF (1990) New Late Cretaceous mammals from the Los Alamitos Formation, Northern Patagonia. Nat Geogr Res 6:63–93

    Google Scholar 

  14. Bonaparte JF (2002) New dryolestidae (Theria) from the Late Cretaceous of Los Alamitos, Argentina, and paleogeographical comments. N Jahrb Geol Paläontol, Abh 224:229–271

    Google Scholar 

  15. Bonaparte JF, Soria MF (1985) Nota sobre el primer mamífero del Cretácico Argentino, Campaniano-Maastrichtiano (Condylarthra). Ameghiniana 21:178–183

    Google Scholar 

  16. Bonaparte JF, Rougier GW (1987) Mamíferos del Cretacico Inferior de Patagonia, Argentina. IV Congreso Latinamericano de Paleontologia, pp 343–359

  17. Bonaparte JF, Van Valen L, Kramartz AG (1993) La fauna local de Punta Peligro, Paleoceno inferior, de la Provincia del Chubut, Patagonia, Argentina. Evol Monogr 14:1–61

    Google Scholar 

  18. Broderip WJ (1828) Observations on the jaw of a fossil mammiferous animal found in the Stonesfield Slate. Zool J Lond 3:408–412

    Google Scholar 

  19. Butler PM (1939) The teeth of the Jurassic mammals. Proc Zool Soc Lond B109:329–356

    Google Scholar 

  20. Butler PM (1972) Some functional aspects of molar evolution. Evolution 26:474–483

    Article  Google Scholar 

  21. Butler PM (1978) Molar cusp nomenclature and homology. In: Butler PM, Joysey KA (eds) Studies in the development, function and evolution of teeth. Academic, London, pp 441–453

    Google Scholar 

  22. Butler PM, Clemens WA (2001) Dental morphology of the Jurassic holotherian mammal Amphitherium, with a discussion of the evolution of mammalian post-canine dental formulae. Palaeontol 44:1–20

    Article  Google Scholar 

  23. Cifelli RL, Madsen SK (1999) Spalacotheriid symmetrodonts (Mammalia) from the medial Cretaceous (upper Albian or lower Cenomanian) Mussentuchit local fauna, Cedar Mountain Formation, Utah, USA. Geodiversitas 21:167–214

    Google Scholar 

  24. Chimento NR, Agnolin FL, Novas FE (in press). The Patagonian fossil mammal Necrolestes: a Neogene survivor of Dryolestoidea. Rev Mus Argentino Cienc Nat 14

  25. Chornogubsky L (2011) New remains of the dryolestoid mammal Leonardus cuspidatus from the Los Alamitos Formation (Late Cretaceous, Argentina). Paläontol Z 85:343–350

    Article  Google Scholar 

  26. Clemens WA, Lees PM (1971) A review of English Early Cretaceous mammals. In: Kermack DM, Kermack KA, editors. Early mammals. Zool J Linn Soc 50, suppl 1:103-116

  27. Clemens WA, Mills JRE (1971) Review of Peramus tenuirostris Owen (Eupantotheria Mammalia). Bull Br Mus Nat Hist (Geology) 20:89–113

    Google Scholar 

  28. Crompton AW (1971) The origin of the tribosphenic molar. In: Kermack DM, Kermack KA, editors. Early mammals. Zool J Linn Soc 50, suppl 1:65-87.

  29. Crompton AW, Wood CB, Stern DN (1994) Differential wear of enamel: a mechanism for maintaining sharp cutting edges. Adv Comp Environ Phys 18:321–346

    Article  Google Scholar 

  30. Cuenca-Bescós G, Badiola A, Canudo JI, Gasca JM, Moreno-Azanza M (2011) New dryolestidan mammal from the Hauterivian–Barremian transition of the Iberian Peninsula. Acta Palaeontol Pol 56:257–267

    Article  Google Scholar 

  31. Dashzeveg D (1975) New primitive therian from the Early Cretaceous of Mongolia. Nature 256:402–403

    Article  Google Scholar 

  32. Dashzeveg D (1979) Arguimus khosbajari gen. n., sp. n. (Peramuridae, Eupantotheria) from the Lower Cretaceous of Mongolia. Acta Palaeontol Pol 24:199–204

    Google Scholar 

  33. Dashzeveg D (1994) Two previously unknown eupantotheres (Mammalia, Eupantotheria). Am Mus Nov 3107:1–11

    Google Scholar 

  34. Dashzeveg D, Kielan-Jaworowska Z (1984) The lower jaw of an aegialodontid mammal from the Early Cretaceous of Mongolia. Zool J Linn Soc 82:217–227

    Article  Google Scholar 

  35. Davis BM (2011) Evolution of the tribosphenic molar pattern in early mammals, with comments on the “dual-origin” hypothesis. J Mamm Evol 18:227–244

    Article  Google Scholar 

  36. Engelmann GF, Callison GL (1998) Mammalian faunas of the Morrison Formation. Mod Geol 23:343–379

    Google Scholar 

  37. Ensom PC, Sigogneau-Russell D (2000) New symmetrodonts (Mammalia, Theria) from the Purbeck Limestone Group, Early Cretaceous of southern England. Cretac Res 21:767–779

    Article  Google Scholar 

  38. Flynn JJ, Parrish JM, Rakotosamimanana B, Simpson WF, Wyss AR (1999) A Middle Jurassic mammal from Madagascar. Nature 401:57–60

    CAS  Article  Google Scholar 

  39. Fox RC (1975) Molar structure and function in the Early Cretaceous mammal Pappotherium. Evolutionary implications for Mesozoic Theria. Canad J Earth Sci 12:412–442

    Google Scholar 

  40. Fox RC (1976) Additions to the mammalian local fauna from the upper Milk River Formation (Upper Cretaceous), Alberta. Canad J Earth Sci 13:1105–1118

    Article  Google Scholar 

  41. Freeman EF (1976) Mammal teeth from the Forest Marble (Middle Jurassic) of Oxfordshire, England. Science 194:1053–1055

    PubMed  CAS  Article  Google Scholar 

  42. Freeman EF (1979) A Middle Jurassic mammal bed from Oxfordshire. Palaeontol 22:135–166

    Google Scholar 

  43. Gaetano LC, Rougier GW (2012) First amphilestid from South America: a molariform from the Jurassic Cañadón Asfalto Formation, Patagonia, Argentina. J Mamm Evol 19:235–248

    Article  Google Scholar 

  44. Gelfo JN, Pascual R (2001) Peligrotherium tropicalis (Mammalia, Dryolestida) from the early Paleocene of Patagonia, a survival from a Mesozoic Gondwanan radiation. Geodiversitas 23:369–379

    Google Scholar 

  45. Gill PG (2004) A new symmetrodont from the Early Cretaceous of England. J Vertebr Paleontol 24:748–752

    Article  Google Scholar 

  46. Goloboff P (1999) NONA (ver. 1.9). Software published by the author, S.M. de Tucuman, Argentina. Available on-line at www.cladistics.org

  47. Goloboff P, Farris JS, Nixon KC (2003) Tree analysis using new technology. Program and documentation available from the authors (and at www.zmuc.dk/public/phylogeny)

  48. Gregory WK (1934) A half century of trituberculy, the Cope–Osborn theory of dental evolution with a revised summary of molar evolution from fish to man. Proc Amer Philos Soc 73:169–317

    Google Scholar 

  49. Gurovich Y, Beck RMD (2009) The phylogenetic affinities of the enigmatic mammalian clade Gondwanatheria. J Mamm Evol 16:25–49

    Article  Google Scholar 

  50. Henkel S, Krebs B (1969) Zwei Säugetier-Unterkiefer aus der Unteren Kreide von Uña (Prov. Cuenca, Spanien). N Jahrb Geol Paläontol, Monatshefte 1969:449–463

    Google Scholar 

  51. Hu Y-M, Fox RC, Wang Y-Q, Li C-K (2005) A new spalacotheriid symmetrodont from the Early Cretaceous of Northeastern China. Am Mus Nov 3475:1–20

    Article  Google Scholar 

  52. Hu Y-M, Wang Y-Q, Luo Z-X, Li C-K (1997) A new symmetrodont mammal from China and its implications for mammalian evolution. Nature 390:137–142

    PubMed  CAS  Article  Google Scholar 

  53. Hu Y-M, Wang Y-Q, Li C-K, Luo Z-X (1998) Morphology of dentition and forelimb of Zhangheotherium. Vertebr PalAsiatica 36:102–125

    Google Scholar 

  54. Ji Q, Luo Z-X, Zhang X, Yuan C-X, Xu L (2009) Evolutionary development of the middle ear in Mesozoic therian mammals. Science 326:278–281

    PubMed  CAS  Article  Google Scholar 

  55. Kielan-Jaworowska Z, Dashzeveg D (1989) Eutherian mammals from the Early Cretaceous of Mongolia. Zool Scripta 18:347–355

    Article  Google Scholar 

  56. Kielan-Jaworowska Z, Dashzeveg D (1998) Early Cretaceous amphilestid (“triconodont”) mammals from Mongolia. Acta Palaeontol Pol 43:413–438

    Google Scholar 

  57. Kielan-Jaworowska Z, Cifelli RL, Luo Z-X (2004) Mammals from the age of dinosaurs: origins, evolution, and structure. Columbia University Press, New York

    Google Scholar 

  58. Krebs B (1985) Theria (Mammalia) aus der Unterkreide von Galve (Provinz Teruel, Spanien). Berl geowiss Abh A 60:29–48

    Google Scholar 

  59. Krebs B (1991) Das Skelett von Henkelotherium guimarotae gen. et sp. nov., (Eupantotheria, Mammalia) aus dem Oberen Jura von Portugal. Berl geowiss Abh A 133:1–121

    Google Scholar 

  60. Krebs B (1998) Drescheratherium acutum gen. et sp. nov., ein neuer Eupantotherier (Mammalia) aus dem Oberen Jura von Portugal. Berl geowiss Abh E 28:91–111

    Google Scholar 

  61. Krusat G (1969) Ein Pantotherier-Molar mit dreispitzigen Talonid aus dem Kimmeridge von Portugal. Paläontol Z 43:52–56

    Google Scholar 

  62. Li G, Luo Z-X (2006) A Cretaceous symmetrodont therian with some monotreme-like postcranial features. Nature 439:195–200

    PubMed  CAS  Article  Google Scholar 

  63. Li C-K, Setoguchi T, Wang Y-Q, Hu Y-M, Chang Z-L (2005) The first record of “eupantotherian” (Theria, Mammalia) from the late Early Cretaceous of western Liaoning, China. Vertebr PalAsiatica 43:245–255

    Google Scholar 

  64. Linnaeus C (1758) Systema naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Vol. 1: Regnum animale. Editio decima, reformata. Laurentii Salvii, Stockholm

  65. Lopatin AV, Averianov AO (2006a) An aegialodontid upper molar and the evolution of mammal dentition. Science 313:1092

    PubMed  CAS  Article  Google Scholar 

  66. Lopatin AV, Averianov AO (2006b) Revision of a pretribosphenic mammal Arguimus from the Early Cretaceous of Mongolia. Acta Palaeontol Pol 51:339–349

    Google Scholar 

  67. Lopatin AV, Averianov AO (2006c) Mesozoic mammals of Russia. In: Barrett PM and Evans SE (eds) 9th International Symposium on Mesozoic Terrestrial Ecosystems and Biota Abstracts and Proceedings Volume. Manchester, pp. 67-70

  68. Lopatin AV, Averianov AO (2007a) The earliest Asiatic pretribosphenic mammal (Cladotheria, Amphitheriidae) from the Middle Jurassic of Siberia. Dokl Biol Sci 417:432–434

    PubMed  CAS  Article  Google Scholar 

  69. Lopatin AV, Averianov AO (2007b) Kielantherium, a basal tribosphenic mammal from the Early Cretaceous of Mongolia, with new data on the aegialodontid dentition. Acta Palaeontol Pol 52:441–446

    Google Scholar 

  70. Lopatin AV, Maschenko EN, Averianov AO, Rezvyi AS, Skutschas PP, Leshchinskiy SV (2005) Early Cretaceous mammals from Western Siberia: 1. Tinodontidae. Paleontol J 39:523–534

    Google Scholar 

  71. Lopatin AV, Averianov AO, Maschenko EN, Leshchinskiy SV (2010a) Early Cretaceous mammals of Western Siberia: 3. Zhangheotheriidae. Paleontol J 44:573–583

    Article  Google Scholar 

  72. Lopatin AV, Maschenko EN, Averianov AO (2010b) A new genus of triconodont mammals from the Early Cretaceous of Western Siberia. Dokl Biol Sci 433:282–285

    PubMed  CAS  Article  Google Scholar 

  73. Luckett WP (1993) An ontogenetic assessment of dental homologies in therian mammals. In: Szalay FS, Novacek MJ, McKenna MC (eds) Mammal phylogeny: Mesozoic differentiation, multituberculates, monotremes, early therians, and marsupials. Springer-Verlag, Inc., New York, pp 182–204

    Google Scholar 

  74. Luo Z-X (2007a) Transformation and diversification in early mammal evolution. Nature 450:1011–1019

    PubMed  CAS  Article  Google Scholar 

  75. Luo Z-X (2007b) Successive diversifications in early mammalian evolution. In: Anderson JS, Sues H-D (eds) Major transitions in vertebrate evolution. Indiana University Press, Bloomington, pp 337–391

    Google Scholar 

  76. Luo Z-X, Ji Q (2005) New study on dental and skeletal features of the Cretaceous “symmetrodontan” mammal Zhangheotherium. J Mamm Evol 12:337–357

    Article  Google Scholar 

  77. Luo Z-X, Wible JR (2005) A Late Jurassic digging mammal and early mammalian diversification. Science 308:103–107

    PubMed  CAS  Article  Google Scholar 

  78. Luo Z-X, Cifelli RL, Kielan-Jaworowska Z (2001a) Dual origin of tribosphenic mammals. Nature 409:53–57

    PubMed  CAS  Article  Google Scholar 

  79. Luo Z-X, Ji Q, S-a J (2001b) New evidence on dental replacement in symmetrodonts and its implications for mammalian evolution. J Morphol 248:256–257

    Google Scholar 

  80. Luo Z-X, Kielan-Jaworowska Z, Cifelli RL (2002) In quest for a phylogeny of Mesozoic mammals. Acta Palaeontol Pol 47:1–78

    Google Scholar 

  81. Luo Z-X, Ruf I, Martin T (2012) The petrosal and inner ear of the Late Jurassic cladotherian mammal Dryolestes leiriensis and implications for ear evolution in therian mammals. Zool J Linn Soc 166:433–463

    Article  Google Scholar 

  82. Luo Z-X, Yuan C-X, Meng Q-J, Ji Q (2011) A Jurassic eutherian mammal and divergence of marsupials and placentals. Nature 476:442–445

    PubMed  CAS  Article  Google Scholar 

  83. Macrini TE, Rougier GW, Rowe TB (2007) Description of a cranial endocast from the fossil mammal Vincelestes neuquenianus (Theriiformes) and its relevance to the evolution of endocranial characters in therians. Anat Rec 290:875–892

    Article  Google Scholar 

  84. Marsh OC (1878) Fossil mammal from the Jurassic of the Rocky Mountains. Am J Sci 15:459

    Google Scholar 

  85. Marsh OC (1879a) Additional remains of Jurassic mammals. Am J Sci 18:215–216

    Google Scholar 

  86. Marsh OC (1879b) Notice of new Jurassic mammals. Am J Sci 20:396–398

    Google Scholar 

  87. Marsh OC (1879c) Notice of a new Jurassic mammal. Am J Sci 18:1–2

    Google Scholar 

  88. Marsh OC (1887) American Jurassic mammals. Am J Sci 33:327–348

    Google Scholar 

  89. Martin T (1997) Tooth replacement in Late Jurassic Dryolestidae (Eupantotheria, Mammalia). J Mamm Evol 4:1–18

    Google Scholar 

  90. Martin T (1998) The premolars of Crusafontia cuencana (Dryolestidae, Mammalia) from the Early Cretaceous (Barremian) of Spain. Berl geowiss Abh E 28:119–126

    Google Scholar 

  91. Martin T (1999) Dryolestidae (Dryolestoidea, Mammalia) aus dem Oberen Jura von Portugal. Abh senckenberg naturforsch Ges 550:1–119

    Google Scholar 

  92. Martin T (2002) New stem-line representatives of Zatheria (Mammalia) from the Late Jurassic of Portugal. J Vertebr Paleontol 22:332–348

    Article  Google Scholar 

  93. Martin T, Rauhut OWM (2005) Mandible and dentition of Asfaltomylos patagonicus (Australosphenida, Mammalia) and the evolution of tribosphenic teeth. J Vertebr Paleontol 25:414–425

    Article  Google Scholar 

  94. Martin T, Averianov AO (2010) Mammals from the Middle Jurassic Balabansai Formation of the Fergana Depression, Kyrgyzstan. J Vertebr Paleontol 30:855–871

    Article  Google Scholar 

  95. Martin T, Averianov AO, Pfretzschner H-U (2010) Mammals from the Late Jurassic Qigu Formation in the Southern Junggar Basin, Xinjiang, Northwest China. Palaeobiodiv Palaeoenviron 90:295–319

    Article  Google Scholar 

  96. Maschenko EN, Lopatin AV, Voronkevich AV (2002) A new Early Cretaceous mammal from Western Siberia. Dokl Biol Sci 386:475–477

    PubMed  CAS  Article  Google Scholar 

  97. Meyer H von (1832) Palaeologica, zur Geschichte der Erde und ihrer Geschoepfe. Schmerber, Frankfurt a/M.

  98. Mills JRE (1964) The dentitions of Peramus and Amphitherium. Proc Linn Soc Lond 175:117–133

    Article  Google Scholar 

  99. Mills JRE (1967) Development of the protocone during the Mesozoic. J Dent Res 46:883–893

    Article  Google Scholar 

  100. Mills JRE (1971) The dentition of Morganucodon. In: Kermack DM, Kermack KA, editors. Early mammals. Zool J Linn Soc 50, suppl 1:29-63

  101. McKenna MC (1975) Towards a phylogenetic classification of the Mammalia. In: Luckett WP, Szalay FS (eds) Phylogeny of the primates. Plenum Press, New York, pp 21–46

    Google Scholar 

  102. Montellano M, Hopson JA, Clark JM (2008) Late Early Jurassic mammaliaforms from Huizachal Canyon, Tamaulipas, México. J Vertebr Paleontol 28:1130–1143

    Article  Google Scholar 

  103. Nixon KC (1999) Winclada (Beta) version 0.9.9. Software published by the author, Ithaca, NY. Available on-line at www.cladistics.org

  104. Osborn HF (1888) On the structure and classification of the Mesozoic Mammalia. J Acad Nat Sci Phila 9:186–264

    Google Scholar 

  105. Owen R (1845) Odontography; or, a treatise on the comparative anatomy of the teeth; their physiological relations, mode of development, and microscopic structure, in the vertebrate animals. Part 3. Hippolyte Ballière, London

  106. Owen R (1854) On some fossil reptilian and mammalian remains from the Purbecks. Q J Geol Soc Lond 10:420–433

    Article  Google Scholar 

  107. Owen R (1866) Description of part of the lower jaw and teeth of a small oolithic mammal (Stylodon pusillus Ow.). Geol Mag 3:199–201

    Article  Google Scholar 

  108. Owen R (1871) Monograph of the fossil Mammalia of the Mesozoic formations. Monogr Palaeontogr Soc 33:1–115

    Google Scholar 

  109. Páez Arango N (2008) Dental and craniomandibular anatomy of Peligrotherium tropicalis: the evolutionary radiation of South American dryolestoid mammals. Master of Science Thesis, University of Louisville, 107 pp.

  110. Pascual R, Ortiz-Jaureguizar EO (2007) The Gondwanan and South American episodes: two major and unrelated moments in the history of the South American mammals. J Mamm Evol 14:75–137

    Article  Google Scholar 

  111. Pascual R, Goin FJ, Gonzales P, Ardolino A, Puerta PF (2000) A highly derived docodont from the Patagonian Late Cretaceous: evolutionary implications for Gondwanan mammals. Geodiversitas 22:395–414

    Google Scholar 

  112. Patterson B (1956) Early Cretaceous mammals and the evolution of mammalian molar teeth. Fieldiana: Geol 13:1–105

    Google Scholar 

  113. Prothero DR (1981) New Jurassic mammals from Como Bluff, Wyoming, and the interrelationships of non-tribosphenic Theria. Bull Am Mus Nat Hist 167:281–325

    Google Scholar 

  114. Rauhut OWM, Martin T, Ortiz-Jaureguizar EO, Puerta PF (2002) A Jurassic mammal from South America. Nature 416:165–168

    PubMed  CAS  Article  Google Scholar 

  115. Rich THV, Vickers-Rich P, Constantine A, Flannery TF, Kool L, van Klaveren NA (1997) A tribosphenic mammal from the Mesozoic of Australia. Science 278:1438–1442

    PubMed  CAS  Article  Google Scholar 

  116. Rich THV, Vickers-Rich P, Constantine A, Flannery TF, Kool L, van Klaveren NA (1999) Early Cretaceous mammals from Flat Rocks, Victoria, Australia. Rec Queen Victoria Mus 106:1–29

    Google Scholar 

  117. Rich THV, Flannery TF, Trusler P, Constantine A, Kool L, van Klaveren NA, Vickers-Rich P (2001) An advanced ausktribosphenid from the Early Cretaceous of Australia. Rec Queen Victoria Mus 110:1–9

    Google Scholar 

  118. Rougier GW, Wible JR, Hopson JA (1996) Basicranial anatomy of Priacodon fruitaensis (Triconodontidae, Mammalia) from the Late Jurassic of Colorado, and a reappraisal of mammaliaform interrelationships. Am Mus Nov 3183:1–38

    Google Scholar 

  119. Rougier GW, Ji Q, Novacek MJ (2003a) A new symmetrodont mammal with fur impressions from the Mesozoic of China. Acta Geol Sin 77:7–14

    Article  Google Scholar 

  120. Rougier GW, Spurlin BK, Kik PK (2003b) A new specimen of Eurylambda aequicrurius and considerations on “symmetrodont” dentition and relationships. Am Mus Nov 3398:1–15

    Article  Google Scholar 

  121. Rougier GW, Isaji S, Manabe M (2007a) An Early Cretaceous mammal from the Kuwajima Formation (Tetori Group), Japan, and a reassessment of triconodont phylogeny. Ann Carnegie Mus 76:73–115

    Article  Google Scholar 

  122. Rougier GW, Martinelli AG, Forasiepi AM, Novacek MJ (2007b) New Jurassic mammals from Patagonia, Argentina: a reappraisal of australosphenidan morphology and interrelationships. Am Mus Nov 3566:1–54

    Article  Google Scholar 

  123. Rougier GW, Apesteguía S, Gaetano LC (2011) Highly specialized mammalian skulls from the Late Cretaceous of South America. Nature 479:98–102

    PubMed  CAS  Article  Google Scholar 

  124. Rougier GW, Chornogubsky L, Casadio S, Páez Arango N, Giallombardo A (2009a) Mammals from the Allen Formation, Late Cretaceous, Argentina. Cretac Res 30:223–238

    Article  Google Scholar 

  125. Rougier GW, Forasiepi AM, Hill RV, Novacek MJ (2009b) New mammalian remains from the Late Cretaceous La Colonia Formation, Patagonia, Argentina. Acta Palaeontol Pol 54:195–212

    Article  Google Scholar 

  126. Rougier GW, Wible JR, Hopson JA (1992) Reconstruction of the cranial vessels in the Early Cretaceous mammal Vincelestes neuquenianus: implications for the evolution of the mammalian cranial vascular system. Journal of Vertebrate Paleontology 12:188–216

    Article  Google Scholar 

  127. Rougier GW, Wible JR, Beck RMD, Apesteguía S (2012) The Miocene mammal Necrolestes demonstrates the survival of a Mesozoic nontherian lineage into the late Cenozoic of South America. Proc Nat Acad Sci 109:20053–20058

    PubMed  CAS  Article  Google Scholar 

  128. Ruf I, Luo Z-X, Wible JR, Martin T (2009) Petrosal anatomy and inner ear structures of the Late Jurassic Henkelotherium (Mammalia, Cladotheria, Dryolestoidea): insight into the early evolution of the ear region in cladotherian mammals. J Anat 214:679–693

    PubMed  Article  Google Scholar 

  129. Schultz JA, Martin T (2010) Wear pattern and functional morphology of dryolestoid molars (Mammalia, Cladotheria). Paläontol Z 85:269–285

    Article  Google Scholar 

  130. Sigogneau-Russell D (1999) Réévaluation des Peramura (Mammalia, Cladotheria) sur la base de nouveaux spécimens du Crétacé inférieur d'Angleterre et du Maroc. Geodiversitas 21:93–127

    Google Scholar 

  131. Sigogneau-Russell D (2003) Holotherian mammals from the Forest Marble (Middle Jurassic of England). Geodiversitas 25:501–537

    Google Scholar 

  132. Sigogneau-Russell D, Dashzeveg D, Russell DE (1992) Further data on Prokennalestes (Mammalia, Eutheria, inc. sed.) from the Early Cretaceous of Mongolia. Zool Scripta 21:205–209

    Article  Google Scholar 

  133. Sigogneau-Russell D, Kielan-Jaworowska Z (2002) Mammals from the Purbeck Limestone Group of Dorset, southern England. Spec Pap Palaeontol 68:21–255

    Google Scholar 

  134. Simpson GG (1925) Mesozoic Mammalia. II. Tinodon and its allies. Am J Sci, Series 5, 10:45–470

    Google Scholar 

  135. Simpson GG (1927) Mesozoic Mammalia. VI. Genera of Morrison pantotheres. Am J Sci, Series 5, 13:409–416

    Google Scholar 

  136. Simpson GG (1928) A catalogue of the Mesozoic Mammalia in the Geological Department of the British Museum. British Museum (Natural History), London

    Google Scholar 

  137. Simpson GG (1929) American Mesozoic Mammalia. Memo Peabody Mus Yale Univ 3:1–235

    Google Scholar 

  138. Sweetman SC (2008) A spalacolestine spalacotheriid (Mammalia, Trechnotheria) from the Early Cretaceous (Barremian) of Southern England and its bearing on spalacotheriid evolution. Palaeontol 51:1367–1385

    Article  Google Scholar 

  139. Trofimov BA (1980) Multituberculata and Symmetrodonta from the Lower Cretaceous of Mongolia. Dokl Akad Nauk SSSR 251:209–212 [Russian]

    Google Scholar 

  140. Tsubamoto T, Rougier GW, Isaji S, Manabe M, Forasiepi AM (2004) New Early Cretaceous spalacotheriid “symmetrodont” mammal from Japan. Acta Palaeontol Pol 49:329–346

    Google Scholar 

  141. Wang S, Wang Y, Hu H, Li H (2001) The existing time of Sihetun vertebrate in western Liaoning, China. Chin Sci Bull 46:779–782

    CAS  Article  Google Scholar 

  142. Wible JR, Rougier GW, Novacek MJ, McKenna MC (2001) Earliest eutherian ear region: a petrosal referred to Prokennalestes from the Early Cretaceous of Mongolia. Am Mus Nov 3322:1–44

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Editor Robert Asher (University Museum of Zoology, Cambridge), Zhe-Xi Luo (University of Chicago, Chicago), and an anonymous reviewer for the useful comments and suggestions. This study was supported by the Deutsche Forschungsgemeinschaft (DFG) grant MA 1643/14-1, the Board of the President of the Russian Federation (MD-802.2009.4), the Russian Foundation for Basic Research (projects 07-04-00393, 10-04-01350, 12-04-92216-Mong, and 11-04-91331-NNIO), the Program of the Presidium of the Russian Academy of Sciences “Origin of Life and Establishment of Biosphere,” by the Ministry of Education and Science of Russian Federation (contract 16.518.11.7070), and by the St. Petersburg State University (grant NIR 3.39.148.2011). The US Civilian Research and Development Foundation (CRDF) grant #RUG1-2571-ST-04, which supported study of various Mesozoic mammals in the Natural History Museum (London), American Museum of Natural History (New York), Peabody Museum of Yale University (New Haven), and National Museum of Natural History (Washington) by AA, is also gratefully acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Thomas Martin.

Additional information

Communicated by: Robert Asher

Electronic supplementary material

ESM 1

(DOC 707 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Averianov, A.O., Martin, T. & Lopatin, A.V. A new phylogeny for basal Trechnotheria and Cladotheria and affinities of South American endemic Late Cretaceous mammals. Naturwissenschaften 100, 311–326 (2013). https://doi.org/10.1007/s00114-013-1028-3

Download citation

Keywords

  • Mammalia
  • Trechnotheria
  • Cladotheria
  • Meridiolestida
  • Late Cretaceous
  • South America