, Volume 100, Issue 4, pp 311–326 | Cite as

A new phylogeny for basal Trechnotheria and Cladotheria and affinities of South American endemic Late Cretaceous mammals

  • Alexander O. Averianov
  • Thomas MartinEmail author
  • Alexey V. Lopatin
Original Paper


The endemic South American mammals Meridiolestida, considered previously as dryolestoid cladotherians, are found to be non-cladotherian trechnotherians related to spalacotheriid symmetrodontans based on a parsimony analysis of 137 morphological characters among 44 taxa. Spalacotheriidae is the sister taxon to Meridiolestida, and the latter clade is derived from a primitive spalacolestine that migrated to South America from North America at the beginning of the Late Cretaceous. Meridiolestida survived until the early Paleocene (Peligrotherium) and early Miocene (Necrolestes) in South America, and their extinction is probably linked to the increasing competition with metatherian and eutherian tribosphenic mammals. The clade Meridiolestida plus Spalacotheriidae is the sister taxon to Cladotheria and forms a new clade Alethinotheria. Alethinotheria and its sister taxon Zhangheotheria, new clade (Zhangheotheriidae plus basal taxa), comprise Trechnotheria. Cladotheria is divided into Zatheria (plus stem taxa, including Amphitherium) and Dryolestida, including Dryolestidae and a paraphyletic array of basal dryolestidans (formerly classified as “Paurodontidae”). The South American Vincelestes and Groebertherium are basal dryolestidans.


Mammalia Trechnotheria Cladotheria Meridiolestida Late Cretaceous South America 



We are grateful to Editor Robert Asher (University Museum of Zoology, Cambridge), Zhe-Xi Luo (University of Chicago, Chicago), and an anonymous reviewer for the useful comments and suggestions. This study was supported by the Deutsche Forschungsgemeinschaft (DFG) grant MA 1643/14-1, the Board of the President of the Russian Federation (MD-802.2009.4), the Russian Foundation for Basic Research (projects 07-04-00393, 10-04-01350, 12-04-92216-Mong, and 11-04-91331-NNIO), the Program of the Presidium of the Russian Academy of Sciences “Origin of Life and Establishment of Biosphere,” by the Ministry of Education and Science of Russian Federation (contract 16.518.11.7070), and by the St. Petersburg State University (grant NIR The US Civilian Research and Development Foundation (CRDF) grant #RUG1-2571-ST-04, which supported study of various Mesozoic mammals in the Natural History Museum (London), American Museum of Natural History (New York), Peabody Museum of Yale University (New Haven), and National Museum of Natural History (Washington) by AA, is also gratefully acknowledged.

Supplementary material

114_2013_1028_MOESM1_ESM.doc (707 kb)
ESM 1 (DOC 707 kb)


  1. Ameghino F (1891) Nuevos restos de mamíferos fósiles descubiertos por Carlos Ameghino en el Eoceno inferior de la Patagonia austral. Especies nuevas, adiciones y correciones. Rev Arg Hist Nat 1:289–328Google Scholar
  2. Archibald JD, Averianov AO (2005) Mammalian faunal succession in the Cretaceous of the Kyzylkum Desert. J Mamm Evol 12:9–22CrossRefGoogle Scholar
  3. Archibald JD, Averianov AO (2012) Phylogenetic analysis, taxonomic revision, and dental ontogeny of the Cretaceous Zhelestidae (Mammalia: Eutheria). Zool J Linn Soc 164:361–426CrossRefGoogle Scholar
  4. Asher RJ, Sánchez-Villagra MR (2005) Locking yourself out: diversity among dentally zalambdodont therian mammals. J Mamm Evol 12:265–282CrossRefGoogle Scholar
  5. Asher RJ, Horovitz I, Martin T, Sánchez-Villagra MR (2007) Neither a rodent nor a platypus: a reexamination of Necrolestes patagonensis Ameghino. Am Mus Nov 3546:1–40CrossRefGoogle Scholar
  6. Averianov AO (2002) Early Cretaceous “symmetrodont” mammal Gobiotheriodon from Mongolia and the classification of “Symmetrodonta.” Acta Palaeontol Pol 47:705–716Google Scholar
  7. Averianov AO, Archibald JD (2003) Mammals from the Upper Cretaceous Aitym Formation, Kyzylkum Desert, Uzbekistan. Cretac Res 24:171–191CrossRefGoogle Scholar
  8. Averianov AO, Lopatin AV (2008) “Protocone” in a pretribosphenic mammal and upper dentition of tinodontid “symmetrodontans.” J Vertebr Paleontol 28:548–552CrossRefGoogle Scholar
  9. Averianov AO, Lopatin AV (2011) Phylogeny of triconodonts and symmetrodonts and the origin of extant mammals. Dokl Biol Sci 436:32–35PubMedCrossRefGoogle Scholar
  10. Averianov AO, Archibald JD, Ekdale EG (2010a) New material of the Late Cretaceous deltatheroidan mammal Sulestes from Uzbekistan and phylogenetic reassessment of the metatherian–eutherian dichotomy. J Syst Palaeontol 8:301–330CrossRefGoogle Scholar
  11. Averianov AO, Lopatin AV, Krasnolutskii SA, Ivantsov SV (2010b) New docodontans from the Middle Jurassic of Siberia and reanalysis of Docodonta interrelationships. Proc Zool Inst Russ Acad Sci 314:121–148Google Scholar
  12. Bonaparte JF (1986) Sobre Mesungulatum houssayi y nuevos mamíferos cretacicos de Patagonia. Actas IV Congreso Argentino de Paleontología y Bioestratigrafía 2:48–61Google Scholar
  13. Bonaparte JF (1990) New Late Cretaceous mammals from the Los Alamitos Formation, Northern Patagonia. Nat Geogr Res 6:63–93Google Scholar
  14. Bonaparte JF (2002) New dryolestidae (Theria) from the Late Cretaceous of Los Alamitos, Argentina, and paleogeographical comments. N Jahrb Geol Paläontol, Abh 224:229–271Google Scholar
  15. Bonaparte JF, Soria MF (1985) Nota sobre el primer mamífero del Cretácico Argentino, Campaniano-Maastrichtiano (Condylarthra). Ameghiniana 21:178–183Google Scholar
  16. Bonaparte JF, Rougier GW (1987) Mamíferos del Cretacico Inferior de Patagonia, Argentina. IV Congreso Latinamericano de Paleontologia, pp 343–359Google Scholar
  17. Bonaparte JF, Van Valen L, Kramartz AG (1993) La fauna local de Punta Peligro, Paleoceno inferior, de la Provincia del Chubut, Patagonia, Argentina. Evol Monogr 14:1–61Google Scholar
  18. Broderip WJ (1828) Observations on the jaw of a fossil mammiferous animal found in the Stonesfield Slate. Zool J Lond 3:408–412Google Scholar
  19. Butler PM (1939) The teeth of the Jurassic mammals. Proc Zool Soc Lond B109:329–356Google Scholar
  20. Butler PM (1972) Some functional aspects of molar evolution. Evolution 26:474–483CrossRefGoogle Scholar
  21. Butler PM (1978) Molar cusp nomenclature and homology. In: Butler PM, Joysey KA (eds) Studies in the development, function and evolution of teeth. Academic, London, pp 441–453Google Scholar
  22. Butler PM, Clemens WA (2001) Dental morphology of the Jurassic holotherian mammal Amphitherium, with a discussion of the evolution of mammalian post-canine dental formulae. Palaeontol 44:1–20CrossRefGoogle Scholar
  23. Cifelli RL, Madsen SK (1999) Spalacotheriid symmetrodonts (Mammalia) from the medial Cretaceous (upper Albian or lower Cenomanian) Mussentuchit local fauna, Cedar Mountain Formation, Utah, USA. Geodiversitas 21:167–214Google Scholar
  24. Chimento NR, Agnolin FL, Novas FE (in press). The Patagonian fossil mammal Necrolestes: a Neogene survivor of Dryolestoidea. Rev Mus Argentino Cienc Nat 14Google Scholar
  25. Chornogubsky L (2011) New remains of the dryolestoid mammal Leonardus cuspidatus from the Los Alamitos Formation (Late Cretaceous, Argentina). Paläontol Z 85:343–350CrossRefGoogle Scholar
  26. Clemens WA, Lees PM (1971) A review of English Early Cretaceous mammals. In: Kermack DM, Kermack KA, editors. Early mammals. Zool J Linn Soc 50, suppl 1:103-116 Google Scholar
  27. Clemens WA, Mills JRE (1971) Review of Peramus tenuirostris Owen (Eupantotheria Mammalia). Bull Br Mus Nat Hist (Geology) 20:89–113Google Scholar
  28. Crompton AW (1971) The origin of the tribosphenic molar. In: Kermack DM, Kermack KA, editors. Early mammals. Zool J Linn Soc 50, suppl 1:65-87.Google Scholar
  29. Crompton AW, Wood CB, Stern DN (1994) Differential wear of enamel: a mechanism for maintaining sharp cutting edges. Adv Comp Environ Phys 18:321–346CrossRefGoogle Scholar
  30. Cuenca-Bescós G, Badiola A, Canudo JI, Gasca JM, Moreno-Azanza M (2011) New dryolestidan mammal from the Hauterivian–Barremian transition of the Iberian Peninsula. Acta Palaeontol Pol 56:257–267CrossRefGoogle Scholar
  31. Dashzeveg D (1975) New primitive therian from the Early Cretaceous of Mongolia. Nature 256:402–403CrossRefGoogle Scholar
  32. Dashzeveg D (1979) Arguimus khosbajari gen. n., sp. n. (Peramuridae, Eupantotheria) from the Lower Cretaceous of Mongolia. Acta Palaeontol Pol 24:199–204Google Scholar
  33. Dashzeveg D (1994) Two previously unknown eupantotheres (Mammalia, Eupantotheria). Am Mus Nov 3107:1–11Google Scholar
  34. Dashzeveg D, Kielan-Jaworowska Z (1984) The lower jaw of an aegialodontid mammal from the Early Cretaceous of Mongolia. Zool J Linn Soc 82:217–227CrossRefGoogle Scholar
  35. Davis BM (2011) Evolution of the tribosphenic molar pattern in early mammals, with comments on the “dual-origin” hypothesis. J Mamm Evol 18:227–244CrossRefGoogle Scholar
  36. Engelmann GF, Callison GL (1998) Mammalian faunas of the Morrison Formation. Mod Geol 23:343–379Google Scholar
  37. Ensom PC, Sigogneau-Russell D (2000) New symmetrodonts (Mammalia, Theria) from the Purbeck Limestone Group, Early Cretaceous of southern England. Cretac Res 21:767–779CrossRefGoogle Scholar
  38. Flynn JJ, Parrish JM, Rakotosamimanana B, Simpson WF, Wyss AR (1999) A Middle Jurassic mammal from Madagascar. Nature 401:57–60CrossRefGoogle Scholar
  39. Fox RC (1975) Molar structure and function in the Early Cretaceous mammal Pappotherium. Evolutionary implications for Mesozoic Theria. Canad J Earth Sci 12:412–442Google Scholar
  40. Fox RC (1976) Additions to the mammalian local fauna from the upper Milk River Formation (Upper Cretaceous), Alberta. Canad J Earth Sci 13:1105–1118CrossRefGoogle Scholar
  41. Freeman EF (1976) Mammal teeth from the Forest Marble (Middle Jurassic) of Oxfordshire, England. Science 194:1053–1055PubMedCrossRefGoogle Scholar
  42. Freeman EF (1979) A Middle Jurassic mammal bed from Oxfordshire. Palaeontol 22:135–166Google Scholar
  43. Gaetano LC, Rougier GW (2012) First amphilestid from South America: a molariform from the Jurassic Cañadón Asfalto Formation, Patagonia, Argentina. J Mamm Evol 19:235–248CrossRefGoogle Scholar
  44. Gelfo JN, Pascual R (2001) Peligrotherium tropicalis (Mammalia, Dryolestida) from the early Paleocene of Patagonia, a survival from a Mesozoic Gondwanan radiation. Geodiversitas 23:369–379Google Scholar
  45. Gill PG (2004) A new symmetrodont from the Early Cretaceous of England. J Vertebr Paleontol 24:748–752CrossRefGoogle Scholar
  46. Goloboff P (1999) NONA (ver. 1.9). Software published by the author, S.M. de Tucuman, Argentina. Available on-line at
  47. Goloboff P, Farris JS, Nixon KC (2003) Tree analysis using new technology. Program and documentation available from the authors (and at
  48. Gregory WK (1934) A half century of trituberculy, the Cope–Osborn theory of dental evolution with a revised summary of molar evolution from fish to man. Proc Amer Philos Soc 73:169–317Google Scholar
  49. Gurovich Y, Beck RMD (2009) The phylogenetic affinities of the enigmatic mammalian clade Gondwanatheria. J Mamm Evol 16:25–49CrossRefGoogle Scholar
  50. Henkel S, Krebs B (1969) Zwei Säugetier-Unterkiefer aus der Unteren Kreide von Uña (Prov. Cuenca, Spanien). N Jahrb Geol Paläontol, Monatshefte 1969:449–463Google Scholar
  51. Hu Y-M, Fox RC, Wang Y-Q, Li C-K (2005) A new spalacotheriid symmetrodont from the Early Cretaceous of Northeastern China. Am Mus Nov 3475:1–20CrossRefGoogle Scholar
  52. Hu Y-M, Wang Y-Q, Luo Z-X, Li C-K (1997) A new symmetrodont mammal from China and its implications for mammalian evolution. Nature 390:137–142PubMedCrossRefGoogle Scholar
  53. Hu Y-M, Wang Y-Q, Li C-K, Luo Z-X (1998) Morphology of dentition and forelimb of Zhangheotherium. Vertebr PalAsiatica 36:102–125Google Scholar
  54. Ji Q, Luo Z-X, Zhang X, Yuan C-X, Xu L (2009) Evolutionary development of the middle ear in Mesozoic therian mammals. Science 326:278–281PubMedCrossRefGoogle Scholar
  55. Kielan-Jaworowska Z, Dashzeveg D (1989) Eutherian mammals from the Early Cretaceous of Mongolia. Zool Scripta 18:347–355CrossRefGoogle Scholar
  56. Kielan-Jaworowska Z, Dashzeveg D (1998) Early Cretaceous amphilestid (“triconodont”) mammals from Mongolia. Acta Palaeontol Pol 43:413–438Google Scholar
  57. Kielan-Jaworowska Z, Cifelli RL, Luo Z-X (2004) Mammals from the age of dinosaurs: origins, evolution, and structure. Columbia University Press, New YorkGoogle Scholar
  58. Krebs B (1985) Theria (Mammalia) aus der Unterkreide von Galve (Provinz Teruel, Spanien). Berl geowiss Abh A 60:29–48Google Scholar
  59. Krebs B (1991) Das Skelett von Henkelotherium guimarotae gen. et sp. nov., (Eupantotheria, Mammalia) aus dem Oberen Jura von Portugal. Berl geowiss Abh A 133:1–121Google Scholar
  60. Krebs B (1998) Drescheratherium acutum gen. et sp. nov., ein neuer Eupantotherier (Mammalia) aus dem Oberen Jura von Portugal. Berl geowiss Abh E 28:91–111Google Scholar
  61. Krusat G (1969) Ein Pantotherier-Molar mit dreispitzigen Talonid aus dem Kimmeridge von Portugal. Paläontol Z 43:52–56Google Scholar
  62. Li G, Luo Z-X (2006) A Cretaceous symmetrodont therian with some monotreme-like postcranial features. Nature 439:195–200PubMedCrossRefGoogle Scholar
  63. Li C-K, Setoguchi T, Wang Y-Q, Hu Y-M, Chang Z-L (2005) The first record of “eupantotherian” (Theria, Mammalia) from the late Early Cretaceous of western Liaoning, China. Vertebr PalAsiatica 43:245–255Google Scholar
  64. Linnaeus C (1758) Systema naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Vol. 1: Regnum animale. Editio decima, reformata. Laurentii Salvii, StockholmGoogle Scholar
  65. Lopatin AV, Averianov AO (2006a) An aegialodontid upper molar and the evolution of mammal dentition. Science 313:1092PubMedCrossRefGoogle Scholar
  66. Lopatin AV, Averianov AO (2006b) Revision of a pretribosphenic mammal Arguimus from the Early Cretaceous of Mongolia. Acta Palaeontol Pol 51:339–349Google Scholar
  67. Lopatin AV, Averianov AO (2006c) Mesozoic mammals of Russia. In: Barrett PM and Evans SE (eds) 9th International Symposium on Mesozoic Terrestrial Ecosystems and Biota Abstracts and Proceedings Volume. Manchester, pp. 67-70Google Scholar
  68. Lopatin AV, Averianov AO (2007a) The earliest Asiatic pretribosphenic mammal (Cladotheria, Amphitheriidae) from the Middle Jurassic of Siberia. Dokl Biol Sci 417:432–434PubMedCrossRefGoogle Scholar
  69. Lopatin AV, Averianov AO (2007b) Kielantherium, a basal tribosphenic mammal from the Early Cretaceous of Mongolia, with new data on the aegialodontid dentition. Acta Palaeontol Pol 52:441–446Google Scholar
  70. Lopatin AV, Maschenko EN, Averianov AO, Rezvyi AS, Skutschas PP, Leshchinskiy SV (2005) Early Cretaceous mammals from Western Siberia: 1. Tinodontidae. Paleontol J 39:523–534Google Scholar
  71. Lopatin AV, Averianov AO, Maschenko EN, Leshchinskiy SV (2010a) Early Cretaceous mammals of Western Siberia: 3. Zhangheotheriidae. Paleontol J 44:573–583CrossRefGoogle Scholar
  72. Lopatin AV, Maschenko EN, Averianov AO (2010b) A new genus of triconodont mammals from the Early Cretaceous of Western Siberia. Dokl Biol Sci 433:282–285PubMedCrossRefGoogle Scholar
  73. Luckett WP (1993) An ontogenetic assessment of dental homologies in therian mammals. In: Szalay FS, Novacek MJ, McKenna MC (eds) Mammal phylogeny: Mesozoic differentiation, multituberculates, monotremes, early therians, and marsupials. Springer-Verlag, Inc., New York, pp 182–204Google Scholar
  74. Luo Z-X (2007a) Transformation and diversification in early mammal evolution. Nature 450:1011–1019PubMedCrossRefGoogle Scholar
  75. Luo Z-X (2007b) Successive diversifications in early mammalian evolution. In: Anderson JS, Sues H-D (eds) Major transitions in vertebrate evolution. Indiana University Press, Bloomington, pp 337–391Google Scholar
  76. Luo Z-X, Ji Q (2005) New study on dental and skeletal features of the Cretaceous “symmetrodontan” mammal Zhangheotherium. J Mamm Evol 12:337–357CrossRefGoogle Scholar
  77. Luo Z-X, Wible JR (2005) A Late Jurassic digging mammal and early mammalian diversification. Science 308:103–107PubMedCrossRefGoogle Scholar
  78. Luo Z-X, Cifelli RL, Kielan-Jaworowska Z (2001a) Dual origin of tribosphenic mammals. Nature 409:53–57PubMedCrossRefGoogle Scholar
  79. Luo Z-X, Ji Q, S-a J (2001b) New evidence on dental replacement in symmetrodonts and its implications for mammalian evolution. J Morphol 248:256–257Google Scholar
  80. Luo Z-X, Kielan-Jaworowska Z, Cifelli RL (2002) In quest for a phylogeny of Mesozoic mammals. Acta Palaeontol Pol 47:1–78Google Scholar
  81. Luo Z-X, Ruf I, Martin T (2012) The petrosal and inner ear of the Late Jurassic cladotherian mammal Dryolestes leiriensis and implications for ear evolution in therian mammals. Zool J Linn Soc 166:433–463CrossRefGoogle Scholar
  82. Luo Z-X, Yuan C-X, Meng Q-J, Ji Q (2011) A Jurassic eutherian mammal and divergence of marsupials and placentals. Nature 476:442–445PubMedCrossRefGoogle Scholar
  83. Macrini TE, Rougier GW, Rowe TB (2007) Description of a cranial endocast from the fossil mammal Vincelestes neuquenianus (Theriiformes) and its relevance to the evolution of endocranial characters in therians. Anat Rec 290:875–892CrossRefGoogle Scholar
  84. Marsh OC (1878) Fossil mammal from the Jurassic of the Rocky Mountains. Am J Sci 15:459Google Scholar
  85. Marsh OC (1879a) Additional remains of Jurassic mammals. Am J Sci 18:215–216Google Scholar
  86. Marsh OC (1879b) Notice of new Jurassic mammals. Am J Sci 20:396–398Google Scholar
  87. Marsh OC (1879c) Notice of a new Jurassic mammal. Am J Sci 18:1–2Google Scholar
  88. Marsh OC (1887) American Jurassic mammals. Am J Sci 33:327–348Google Scholar
  89. Martin T (1997) Tooth replacement in Late Jurassic Dryolestidae (Eupantotheria, Mammalia). J Mamm Evol 4:1–18Google Scholar
  90. Martin T (1998) The premolars of Crusafontia cuencana (Dryolestidae, Mammalia) from the Early Cretaceous (Barremian) of Spain. Berl geowiss Abh E 28:119–126Google Scholar
  91. Martin T (1999) Dryolestidae (Dryolestoidea, Mammalia) aus dem Oberen Jura von Portugal. Abh senckenberg naturforsch Ges 550:1–119Google Scholar
  92. Martin T (2002) New stem-line representatives of Zatheria (Mammalia) from the Late Jurassic of Portugal. J Vertebr Paleontol 22:332–348CrossRefGoogle Scholar
  93. Martin T, Rauhut OWM (2005) Mandible and dentition of Asfaltomylos patagonicus (Australosphenida, Mammalia) and the evolution of tribosphenic teeth. J Vertebr Paleontol 25:414–425CrossRefGoogle Scholar
  94. Martin T, Averianov AO (2010) Mammals from the Middle Jurassic Balabansai Formation of the Fergana Depression, Kyrgyzstan. J Vertebr Paleontol 30:855–871CrossRefGoogle Scholar
  95. Martin T, Averianov AO, Pfretzschner H-U (2010) Mammals from the Late Jurassic Qigu Formation in the Southern Junggar Basin, Xinjiang, Northwest China. Palaeobiodiv Palaeoenviron 90:295–319CrossRefGoogle Scholar
  96. Maschenko EN, Lopatin AV, Voronkevich AV (2002) A new Early Cretaceous mammal from Western Siberia. Dokl Biol Sci 386:475–477PubMedCrossRefGoogle Scholar
  97. Meyer H von (1832) Palaeologica, zur Geschichte der Erde und ihrer Geschoepfe. Schmerber, Frankfurt a/M.Google Scholar
  98. Mills JRE (1964) The dentitions of Peramus and Amphitherium. Proc Linn Soc Lond 175:117–133CrossRefGoogle Scholar
  99. Mills JRE (1967) Development of the protocone during the Mesozoic. J Dent Res 46:883–893CrossRefGoogle Scholar
  100. Mills JRE (1971) The dentition of Morganucodon. In: Kermack DM, Kermack KA, editors. Early mammals. Zool J Linn Soc 50, suppl 1:29-63Google Scholar
  101. McKenna MC (1975) Towards a phylogenetic classification of the Mammalia. In: Luckett WP, Szalay FS (eds) Phylogeny of the primates. Plenum Press, New York, pp 21–46CrossRefGoogle Scholar
  102. Montellano M, Hopson JA, Clark JM (2008) Late Early Jurassic mammaliaforms from Huizachal Canyon, Tamaulipas, México. J Vertebr Paleontol 28:1130–1143CrossRefGoogle Scholar
  103. Nixon KC (1999) Winclada (Beta) version 0.9.9. Software published by the author, Ithaca, NY. Available on-line at
  104. Osborn HF (1888) On the structure and classification of the Mesozoic Mammalia. J Acad Nat Sci Phila 9:186–264Google Scholar
  105. Owen R (1845) Odontography; or, a treatise on the comparative anatomy of the teeth; their physiological relations, mode of development, and microscopic structure, in the vertebrate animals. Part 3. Hippolyte Ballière, LondonGoogle Scholar
  106. Owen R (1854) On some fossil reptilian and mammalian remains from the Purbecks. Q J Geol Soc Lond 10:420–433CrossRefGoogle Scholar
  107. Owen R (1866) Description of part of the lower jaw and teeth of a small oolithic mammal (Stylodon pusillus Ow.). Geol Mag 3:199–201CrossRefGoogle Scholar
  108. Owen R (1871) Monograph of the fossil Mammalia of the Mesozoic formations. Monogr Palaeontogr Soc 33:1–115Google Scholar
  109. Páez Arango N (2008) Dental and craniomandibular anatomy of Peligrotherium tropicalis: the evolutionary radiation of South American dryolestoid mammals. Master of Science Thesis, University of Louisville, 107 pp.Google Scholar
  110. Pascual R, Ortiz-Jaureguizar EO (2007) The Gondwanan and South American episodes: two major and unrelated moments in the history of the South American mammals. J Mamm Evol 14:75–137CrossRefGoogle Scholar
  111. Pascual R, Goin FJ, Gonzales P, Ardolino A, Puerta PF (2000) A highly derived docodont from the Patagonian Late Cretaceous: evolutionary implications for Gondwanan mammals. Geodiversitas 22:395–414Google Scholar
  112. Patterson B (1956) Early Cretaceous mammals and the evolution of mammalian molar teeth. Fieldiana: Geol 13:1–105Google Scholar
  113. Prothero DR (1981) New Jurassic mammals from Como Bluff, Wyoming, and the interrelationships of non-tribosphenic Theria. Bull Am Mus Nat Hist 167:281–325Google Scholar
  114. Rauhut OWM, Martin T, Ortiz-Jaureguizar EO, Puerta PF (2002) A Jurassic mammal from South America. Nature 416:165–168PubMedCrossRefGoogle Scholar
  115. Rich THV, Vickers-Rich P, Constantine A, Flannery TF, Kool L, van Klaveren NA (1997) A tribosphenic mammal from the Mesozoic of Australia. Science 278:1438–1442PubMedCrossRefGoogle Scholar
  116. Rich THV, Vickers-Rich P, Constantine A, Flannery TF, Kool L, van Klaveren NA (1999) Early Cretaceous mammals from Flat Rocks, Victoria, Australia. Rec Queen Victoria Mus 106:1–29Google Scholar
  117. Rich THV, Flannery TF, Trusler P, Constantine A, Kool L, van Klaveren NA, Vickers-Rich P (2001) An advanced ausktribosphenid from the Early Cretaceous of Australia. Rec Queen Victoria Mus 110:1–9Google Scholar
  118. Rougier GW, Wible JR, Hopson JA (1996) Basicranial anatomy of Priacodon fruitaensis (Triconodontidae, Mammalia) from the Late Jurassic of Colorado, and a reappraisal of mammaliaform interrelationships. Am Mus Nov 3183:1–38Google Scholar
  119. Rougier GW, Ji Q, Novacek MJ (2003a) A new symmetrodont mammal with fur impressions from the Mesozoic of China. Acta Geol Sin 77:7–14CrossRefGoogle Scholar
  120. Rougier GW, Spurlin BK, Kik PK (2003b) A new specimen of Eurylambda aequicrurius and considerations on “symmetrodont” dentition and relationships. Am Mus Nov 3398:1–15CrossRefGoogle Scholar
  121. Rougier GW, Isaji S, Manabe M (2007a) An Early Cretaceous mammal from the Kuwajima Formation (Tetori Group), Japan, and a reassessment of triconodont phylogeny. Ann Carnegie Mus 76:73–115CrossRefGoogle Scholar
  122. Rougier GW, Martinelli AG, Forasiepi AM, Novacek MJ (2007b) New Jurassic mammals from Patagonia, Argentina: a reappraisal of australosphenidan morphology and interrelationships. Am Mus Nov 3566:1–54CrossRefGoogle Scholar
  123. Rougier GW, Apesteguía S, Gaetano LC (2011) Highly specialized mammalian skulls from the Late Cretaceous of South America. Nature 479:98–102PubMedCrossRefGoogle Scholar
  124. Rougier GW, Chornogubsky L, Casadio S, Páez Arango N, Giallombardo A (2009a) Mammals from the Allen Formation, Late Cretaceous, Argentina. Cretac Res 30:223–238CrossRefGoogle Scholar
  125. Rougier GW, Forasiepi AM, Hill RV, Novacek MJ (2009b) New mammalian remains from the Late Cretaceous La Colonia Formation, Patagonia, Argentina. Acta Palaeontol Pol 54:195–212CrossRefGoogle Scholar
  126. Rougier GW, Wible JR, Hopson JA (1992) Reconstruction of the cranial vessels in the Early Cretaceous mammal Vincelestes neuquenianus: implications for the evolution of the mammalian cranial vascular system. Journal of Vertebrate Paleontology 12:188–216CrossRefGoogle Scholar
  127. Rougier GW, Wible JR, Beck RMD, Apesteguía S (2012) The Miocene mammal Necrolestes demonstrates the survival of a Mesozoic nontherian lineage into the late Cenozoic of South America. Proc Nat Acad Sci 109:20053–20058PubMedCrossRefGoogle Scholar
  128. Ruf I, Luo Z-X, Wible JR, Martin T (2009) Petrosal anatomy and inner ear structures of the Late Jurassic Henkelotherium (Mammalia, Cladotheria, Dryolestoidea): insight into the early evolution of the ear region in cladotherian mammals. J Anat 214:679–693PubMedCrossRefGoogle Scholar
  129. Schultz JA, Martin T (2010) Wear pattern and functional morphology of dryolestoid molars (Mammalia, Cladotheria). Paläontol Z 85:269–285CrossRefGoogle Scholar
  130. Sigogneau-Russell D (1999) Réévaluation des Peramura (Mammalia, Cladotheria) sur la base de nouveaux spécimens du Crétacé inférieur d'Angleterre et du Maroc. Geodiversitas 21:93–127Google Scholar
  131. Sigogneau-Russell D (2003) Holotherian mammals from the Forest Marble (Middle Jurassic of England). Geodiversitas 25:501–537Google Scholar
  132. Sigogneau-Russell D, Dashzeveg D, Russell DE (1992) Further data on Prokennalestes (Mammalia, Eutheria, inc. sed.) from the Early Cretaceous of Mongolia. Zool Scripta 21:205–209CrossRefGoogle Scholar
  133. Sigogneau-Russell D, Kielan-Jaworowska Z (2002) Mammals from the Purbeck Limestone Group of Dorset, southern England. Spec Pap Palaeontol 68:21–255Google Scholar
  134. Simpson GG (1925) Mesozoic Mammalia. II. Tinodon and its allies. Am J Sci, Series 5, 10:45–470Google Scholar
  135. Simpson GG (1927) Mesozoic Mammalia. VI. Genera of Morrison pantotheres. Am J Sci, Series 5, 13:409–416Google Scholar
  136. Simpson GG (1928) A catalogue of the Mesozoic Mammalia in the Geological Department of the British Museum. British Museum (Natural History), LondonGoogle Scholar
  137. Simpson GG (1929) American Mesozoic Mammalia. Memo Peabody Mus Yale Univ 3:1–235Google Scholar
  138. Sweetman SC (2008) A spalacolestine spalacotheriid (Mammalia, Trechnotheria) from the Early Cretaceous (Barremian) of Southern England and its bearing on spalacotheriid evolution. Palaeontol 51:1367–1385CrossRefGoogle Scholar
  139. Trofimov BA (1980) Multituberculata and Symmetrodonta from the Lower Cretaceous of Mongolia. Dokl Akad Nauk SSSR 251:209–212 [Russian]Google Scholar
  140. Tsubamoto T, Rougier GW, Isaji S, Manabe M, Forasiepi AM (2004) New Early Cretaceous spalacotheriid “symmetrodont” mammal from Japan. Acta Palaeontol Pol 49:329–346Google Scholar
  141. Wang S, Wang Y, Hu H, Li H (2001) The existing time of Sihetun vertebrate in western Liaoning, China. Chin Sci Bull 46:779–782CrossRefGoogle Scholar
  142. Wible JR, Rougier GW, Novacek MJ, McKenna MC (2001) Earliest eutherian ear region: a petrosal referred to Prokennalestes from the Early Cretaceous of Mongolia. Am Mus Nov 3322:1–44CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Alexander O. Averianov
    • 1
    • 2
  • Thomas Martin
    • 3
    Email author
  • Alexey V. Lopatin
    • 4
  1. 1.Zoological Institute of the Russian Academy of SciencesSaint PetersburgRussia
  2. 2.Department of Paleontology, Geological FacultySaint Petersburg State UniversitySaint PetersburgRussia
  3. 3.Steinmann-Institut für Geologie, Mineralogie und PaläontologieUniversität BonnBonnGermany
  4. 4.Borissiak Paleontological Institute of the Russian Academy of SciencesMoscowRussia

Personalised recommendations