Skip to main content

A prehistoric tsunami induced long-lasting ecosystem changes on a semi-arid tropical island—the case of Boka Bartol (Bonaire, Leeward Antilles)

Abstract

The Caribbean is highly vulnerable to coastal hazards. Based on their short recurrence intervals over the intra-American seas, high-category tropical cyclones and their associated effects of elevated storm surge, heavy wave impacts, mudslides and floods represent the most serious threat. Given the abundance of historical accounts and trigger mechanisms (strike-slip motion and oblique collision at the northern and southern Caribbean plate boundaries, submarine and coastal landslides, volcanism), tsunamis must be considered as well. This paper presents interdisciplinary multi-proxy investigations of sediment cores (grain size distribution, carbonate content, loss-on-ignition, magnetic susceptibility, microfauna, macrofauna) from Washington-Slagbaai National Park, NW Bonaire (Leeward Antilles). No historical tsunami is recorded for this island. However, an allochthonous marine layer found in all cores at Boka Bartol reveals several sedimentary criteria typically linked with tsunami deposits. Calibrated 14C data from these cores point to a palaeotsunami with a maximum age of 3,300 years. Alternative explanations for the creation of this layer, such as inland flooding during tropical cyclones, cannot entirely be ruled out, though in recent times even the strongest of these events on Bonaire did not deposit significant amounts of sediment onshore. The setting of Boka Bartol changed from an open mangrove-fringed embayment into a poly- to hyperhaline lagoon due to the establishment or closure of a barrier of coral rubble during or subsequent to the inferred event. The timing of the event is supported by further sedimentary evidence from other lagoonal and alluvial archives on Bonaire.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Angell CL (1986) The biology and culture of tropical oysters. ICLARM Stud Rev 13

  2. Atwater BF, Musumi-Rokkaku S, Satake K, Tsuji Y, Ueda K, Yamaguchi DK (2005) The Orphan Tsunami of 1700—Japanese clues to a parent earthquake in North America. US Geol Survey Prof Papers 1707

  3. Atwater BF, ten Brink US, Buckley M, Halley RS, Jaffe BE, López-Venegas AM, Reinhardt EG, Tuttle MP, Watt S, Wei Y (2012) Geomorphic and stratigraphic evidence for an unusual tsunami or storm a few centuries ago at Anegada, British Virgin Islands. Nat Hazards 63:51–84

    Article  Google Scholar 

  4. Audemard F, Romero G, Rendon H, Cano V (2005) Quaternary fault kinematics and stress tensors along the southern Caribbean from fault-slip data and focal mechanism solutions. Earth-Sci Rev 69:181–233

    Article  Google Scholar 

  5. Bak RPM (1977) Coral reefs and their zonation in the Netherlands Antilles. In: Frost SH, Weiss MP, Saunders JB (eds) Reefs and related carbonates—ecology and sedimentology. AAPG Stud Geol 4:3–16

    Google Scholar 

  6. Benson RH (1959) Ecology of recent ostracodes of the Todos Santos Bay region, Baja California. Univ Kansas Paleont Contr 23

  7. Blott SJ, Pye K (2001) GRADISTAT: a grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surf Proc Land 26:1237–1248

    Article  Google Scholar 

  8. Brill D, Brückner H, Jankaew K, Kelletat D, Scheffers A, Scheffers S (2011) Potential predecessors of the 2004 Indian Ocean Tsunami—sedimentary evidence of extreme wave events at Ban Bang Sak, SW Thailand. Sediment Geol 239:146–161

    Article  Google Scholar 

  9. Brooks WW (1973) Distribution of recent Foraminifera from the Southern Coast of Puerto Rico. Micropaleontology 19:385–416

    Article  Google Scholar 

  10. De Boer BA (1986) Netherlands Antilles. In: Scott DA, Carbonell M (eds) A directory of Neotropical wetlands. IUCN, Cambridge/IWRB, Slimbridge, pp 550–558

  11. De Buisonjé PH (1974): Neogene and Quaternary geology of Aruba, Curaçao and Bonaire (Netherlands Antilles). Dissertation, Rijksuniversiteit Utrecht

  12. Dix GR, Patterson RT, Park LE (1999) Marine saline ponds as sedimentary archives of late Holocene climate and sea-level variation along a carbonate platform margin: Lee Stocking Island, Bahamas. Palaeogeogr Palaeocl 150:223–246

    Article  Google Scholar 

  13. Donato SV, Reinhardt EG, Boyce JI, Rothaus R, Vosmer T (2008) Identifying tsunami deposits using bivalve shell taphonomy. Geology 36:199–202

    Article  Google Scholar 

  14. Donnelly JP, Woodruff JD (2007) Intense hurricane activity over the past 5,000 years controlled by El Niño and the West African monsoon. Nature 447:465–468

    PubMed  Article  CAS  Google Scholar 

  15. Engel M, May SM (2012) Bonaire's boulder fields revisited: evidence for Holocene tsunami impact on the Leeward Antilles. Quat Sci Rev 54:126–141

    Article  Google Scholar 

  16. Engel M, Brückner H, Wennrich V, Scheffers A, Kelletat D, Vött A, Schäbitz F, Daut G, Willershäuser T, May SM (2010) Coastal stratigraphies of eastern Bonaire (Netherlands Antilles): new insights into the palaeo-tsunami history of the southern Caribbean. Sediment Geol 231:14–30

    Article  Google Scholar 

  17. Engel M, Brückner H, Messenzehl K, Frenzel P, May SM, Scheffers A, Scheffers S, Wennrich V, Kelletat D (2012a) Shoreline changes and high-energy wave impacts at the leeward coast of Bonaire (Netherlands Antilles). Earth Planets Space 64:905–921

    Article  Google Scholar 

  18. Engel M, Brückner H, Scheffers AM, May SM, Kelletat DH (2012b) Holocene sea levels of Bonaire (Leeward Antilles) and tectonic implications. Z Geomorph NF. doi:10.1127/0372-8854/2012/S-00111

  19. Etienne S, Buckley M, Paris R, Nandasena AK, Clark K, Strotz L, Chagué-Goff C, Goff J, Richmond B (2011) The use of boulders for characterising past tsunamis: lessons from the 2004 Indian Ocean and 2009 South Pacific tsunamis. Earth-Sci Rev 107:76–90

    Article  Google Scholar 

  20. Frenzel P, Boomer I (2005) The use of ostracods from marginal marine, brackish waters as bioindicators of modern and Quaternary environmental change. Palaeogeogr Palaeocl 225:68–92

    Article  Google Scholar 

  21. Fujiwara O, Masuda, Sakai T, Irizuki T, Fuse K (2000) Tsunami deposits in Holocene bay mud in southern Kanto region, Pacific coast of central Japan. Sediment Geol 135:219–230

    Article  Google Scholar 

  22. García-Cubas A, Reguero M (1995) Moluscos de la laguna Sontecompan, Veracruz, México: sistemática y ecología. Hidrobiológica 5:1–24

    Google Scholar 

  23. Goldenberg SB, Shapiro LJ (1996) Physical mechanisms for the association of El Niño and west African rainfall with Atlantic major hurricane activity. J Climate 9:1169–1187

    Article  Google Scholar 

  24. González C, Urrego LE, Martínez JI, Polanía J, Yokoyama Y (2010) Mangrove dynamics in the southwestern Caribbean since the ‘Little Ice Age’: a history of human and natural disturbances. Holocene 20:849–861

    Article  Google Scholar 

  25. Hall DB (1999) The geomorphic evolution of slopes and sediment chutes on forereefs. Geomorphology 27:257–278

    Article  Google Scholar 

  26. Harbitz CB, Glimsdal S, Bazin S, Zamora N, Løvholt F, Bungum H, Smebye H, Gauer P, Kjekstad O (2012) Tsunami hazard in the Caribbean: regional exposure derived from credible worst case scenarios. Cont Shelf Res 38:1–23

    Article  Google Scholar 

  27. Hart AM, Kaesler RL (1986) Temporal changes in Holocene lagoonal assemblages of Foraminifera from northeastern Yucatán Peninsula, Mexico. J Foramin Res 16:98–109

    Article  Google Scholar 

  28. Hartog J (1978) A short history of Bonaire. De Wit, Aruba

    Google Scholar 

  29. Havach SM, Collins LS (1997) The distribution of recent benthic Foraminifera across habitats of Bocas del Toro, Caribbean Panama. J Foramin Res 27:232–249

    Article  Google Scholar 

  30. Hawkes AD, Bird M, Cowie S, Grundy-Warr C, Horton BP, Hwai ATS, Law L, Macgregor C, Nott J, Ong JE, Rigg J, Robinson R, Tan-Mullins M, Sa TT, Yasin Z, Aik LW (2007) Sediments deposited by the 2004 Indian Ocean Tsunami along the Malaysia–Thailand Peninsula. Mar Geol 242:169–190

    Article  Google Scholar 

  31. Higuera-Gundy A, Brenner M, Hodell DA, Curtis JH, Leyden BW, Binford MW (1999) A 10,300 14C yr record of climate and vegetation change from Haiti. Quatern Res 52:159–170

    Article  CAS  Google Scholar 

  32. Hindson RA, Andrade C (1999) Sedimentation and hydrodynamic processes associated with the tsunami generated by the 1755 Lisbon earthquake. Quat Int 56:27–38

    Article  Google Scholar 

  33. Hippolyte JC, Mann P (2011) Neogene–Quaternary tectonic evolution of the Leeward Antilles islands (Aruba, Bonaire, Curaçao) from fault kinematic analysis. Mar Petrol Geol 28:259–277

    Article  Google Scholar 

  34. Hobgood J (2005) Tropical cyclones. In: Oliver JE (ed) Encyclopedia of world climatology. Springer, Dordrecht, pp 750–755

    Chapter  Google Scholar 

  35. Hornbach MJ, Mann P, Wolf S, King W, Boon R (2008) Assessing slope stability at Seroe Mansinga and Caracas Bay, Curaçao. Final report for APNA, Willemstad, Curaçao. http://www.apna.an/apna/library/files/VistaRoyal/APNAfinalreport.pdf. Accessed 10 Aug 2012

  36. Keyser D (1977) Brackwasser-Cytheracea aus Süd-Florida (Crust.: Ostracoda: Podocopa). Abh Verh naturwiss Ver Hamburg 30:43–85

    Google Scholar 

  37. Klosowska BB (2003) Late Holocene embayment and salina record of Curaçao (Dutch Antilles): criteria to monitor environmental change and biodiversity. Dissertation, Vrije Universiteit Amsterdam

  38. Kobluk DR, Crawford DR (1990) A modern hypersaline organic mud- and gypsum-dominated basin and associated microbialites. Palaios 5:134–148

    Article  Google Scholar 

  39. Kortekaas S, Dawson AG (2007) Distinguishing tsunami from storm deposits: an example from Martinhal, SW Portugal. Sediment Geol 200:208–221

    Article  Google Scholar 

  40. Malaizé B, Bertran P, Carbonel P, Bonnissent D, Charlier K, Galop D, Imbert D, Serrand N, Stouvenot C, Pujol C (2011) Hurricanes and climate in the Caribbean during the past 3700 years BP. Holocene 21:911–924

    Article  Google Scholar 

  41. Malik JN, Shishikura M, Echigo T, Ikeda Y, Satake K, Kayanne H, Sawai Y, Murty CVR, Dikshit O (2011) Geologic evidence for two pre-2004 earthquakes during recent centuries near Port Blair, South Andaman Island, India. Geology 39:559–562

    Article  Google Scholar 

  42. Mamo B, Strotz L, Dominey-Howes D (2009) Tsunami sediments and their foraminiferal assemblages. Earth-Sci Rev 96:263–278

    Article  Google Scholar 

  43. McCloskey TA, Liu K-B (2012) A sedimentary-based history of hurricane strikes on the southern Caribbean coast of Nicaragua. Quat Res. doi:10.1016/j.yqres.2012.07.003

  44. Meschede M, Frisch W (1998) A plate-tectonic model for the Mesozoic and Early Cenozoic history of the Caribbean plate. Tectonophysics 296:269–291

    Article  Google Scholar 

  45. Milne GA, Long AJ, Bassett SE (2005) Modelling Holocene relative sea-level observations from the Caribbean and South America. Quat Sci Rev 24:1183–1202

    Article  Google Scholar 

  46. Monacci NM, Meier-Grünhagen U, Finney BP, Behling H, Wooller MJ (2009) Mangrove ecosystem changes during the Holocene at Spanish Lookout Cay, Belize. Palaeogeogr Palaeocl 280:37–46

    Article  Google Scholar 

  47. Moore HB, Lopez NN (1969) The ecology of Chione cancellata. B Mar Sci 19:131–148

    Google Scholar 

  48. Moore A, Goff J, McAdoo BG, Fritz HM, Gusman A, Kalligeris N, Kalsum K, Susanto A, Suteja D, Synolakis CE (2011) Sedimentary deposits from the 17 July 2006 Western Java Tsunami, Indonesia: use of grain size analyses to assess tsunami flow depth, speed, and traction carpet characteristics. Pure Appl Geophys 168:1951–1961

    Article  Google Scholar 

  49. Morton RA, Richmond BM, Jaffe BE, Gelfenbaum G (2008) Coarse-clast ridge complexes of the Caribbean: a preliminary basis for distinguishing tsunami and storm-wave origins. J Sediment Res 78:624–637

    Article  Google Scholar 

  50. Moya JC, Mercado A (2006) Geomorphologic and stratigraphic investigations on historic and pre-historic tsunami in northwestern Puerto Rico: implications for long term coastal evolution. In: Mercado-Irizarry A, Liu P (eds) Caribbean tsunami hazard. World Scientific, Singapore, pp 149–177

    Chapter  Google Scholar 

  51. Murray JW (2006) Ecology and applications of benthic foraminifera. Cambridge University Press, Cambridge

    Book  Google Scholar 

  52. Nagendra R, Kamalak Kannan BV, Sajith C, Sen G, Reddy AN, Srinivasalu S (2005) A record of foraminiferal assemblage in tsunami sediments along Nagapattinam coast. Curr Sci 89:1947–1952

    Google Scholar 

  53. O'Loughlin KF, Lander JF (2003) Caribbean tsunamis—a 500-year history from 1498–1998. Kluwer, Dordrecht

    Google Scholar 

  54. Palmer S, Burn M (2011) A Late-Holocene record of marine washover events from a coastal lagoon in Jamaica, West Indies. XVIII. INQUA Bern 2011, Switzerland, Abstract ID 2098

  55. Parsons T, Geist EL (2009) Tsunami probability in the Caribbean region. Pure Appl Geophys 165:2089–2116

    Article  Google Scholar 

  56. Pascual A, García BM, Lázaro JR, Pujos M (2009) Asociaciones de foraminíferos bentónicos recientes en la plataforma marina de las Guayanas. Geogaceta 46:75–78

    Google Scholar 

  57. Pérez L, Lorenschat J, Bugja R, Brenner M, Scharf B, Schwalb A (2010) Distribution, diversity and ecology of modern freshwater ostracodes (Crustacea), and hydrochemical characteristics of Lago Petén Itzá, Guatemala. J Limnol 69:146–159

    Article  Google Scholar 

  58. Peters SE, Loss DP (2012) Storm and fair-weather wave base: a relevant distinction? Geology 40:511–514

    Article  Google Scholar 

  59. Pijpers PJ (1933) Geology and paleontology of Bonaire (D.W.I.). Geographische en Geologische Mededeelingen, Physiographisch-Geologische Reeks 8

  60. Pilarczyk JE, Reinhardt EG (2012) Testing foraminiferal taphonomy as a tsunami indicator in a shallow arid system lagoon: Sur, Sultanate of Oman. Mar Geol 295–298:128–136

    Article  Google Scholar 

  61. Radtke U, Schellmann G, Scheffers A, Kelletat D, Kromer B, Kasper HU (2003) Electron spin resonance and radiocarbon dating of coral deposited by Holocene tsunami events on Curaçao, Bonaire and Aruba (Netherlands Antilles). Quat Sci Rev 22:1309–1315

    Article  Google Scholar 

  62. Ramírez-Herrera MT, Cundy AB, Kostoglodov V, Ortiz M (2009) Late Holocene tectonic land-level changes and tsunamis at Mitla lagoon, Guerrero, Mexico. Geofís Int 48:195–209

    Google Scholar 

  63. Reading AJ (1990) Caribbean tropical storm activity over the past four centuries. Int J Climatol 10:365–376

    Article  Google Scholar 

  64. Reimer PJ et al (2009) IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51:1111–1150

    CAS  Google Scholar 

  65. Reinhardt EG, Goodman BN, Boyce JI, Lopez G, van Hengstum P, Rink WJ, Mart Y, Raban A (2006) The tsunami of 13 December A.D. 115 and the destruction of Herod the Great’s harbor at Caesarea Maritima, Israel. Geology 34:1061–1064

    Article  Google Scholar 

  66. Reinhardt EG, Pilarczyk JE, Brown A (2012) Probable tsunami origin for a shell and sand sheet from marine ponds on Anegada, British Virgin Islands. Nat Hazards 63:101–117

    Article  Google Scholar 

  67. Richmond BM, Watt S, Buckley M, Jaffe BE, Gelfenbaum G, Morton RA (2011) Recent storm and tsunami coarse-clast deposit characteristics, southeast Hawai’i. Mar Geol 283:79–89

    Article  Google Scholar 

  68. Ruiz F, Abad M, Cáceres LM, Vidal JR, Carretero MI, Pozo M, González-Regalado ML (2010) Ostracods as tsunami tracers in Holocene sequences. Quat Res 73:130–135

    Article  Google Scholar 

  69. Sawai Y, Jankaew K, Martin ME, Prendergast A, Choowong M, Charoentitirat T (2009) Diatom assemblages in tsunami deposits associated with the 2004 Indian Ocean tsunami at Phra Tong Island, Thailand. Mar Micropaleontol 73:70–79

    Article  Google Scholar 

  70. Scheffers A (2005) Coastal response to extreme wave events—hurricanes and tsunami on Bonaire. Essener Geogr Arb 37

  71. Scheffers S, Scheffers A, Radtke U, Kelletat D, Staben K, Bak R (2006) Tsunamis trigger long-lasting phase-shift in a coral reef ecosystem. Z Geomorph NF, Suppl 146:59–79

    Google Scholar 

  72. Scheucher LEA, Piller WE, Vortisch W (2011) Foraminiferal analysis of tsunami deposits: two examples from the northeastern and southwestern coast of the Dominican Republic. In: Bornemann A, Brachert TC, Ehrmann W (eds) SEDIMENT 2011—sediments: archives of the earth system, Leipzig, June 23–26, 2011, Abstracts, pp 86–87

  73. Shanmugan G (2012) Process-sedimentological challenges in distinguishing paleo-tsunami deposits. Nat Hazards 63:5–30

    Article  Google Scholar 

  74. Spiske M, Jaffe BE (2009) Sedimentology and hydrodynamic implications of a coarse-grained hurricane sequence in a carbonate reef setting. Geology 37:839–842

    Article  Google Scholar 

  75. Swain FM, Gilby JM (1967) Recent Ostracoda from Corinto Bay, Western Nicaragua, and their relationship to some other assemblages of the Pacific Coast. J Paleontol 41:306–334

    Google Scholar 

  76. Switzer AD, Jones BG (2008) Large-scale washover sedimentation in a freshwater lagoon from the southeast Australian coast: sea-level change, tsunami or exceptionally large storm? Holocene 18:787–803

    Article  Google Scholar 

  77. Szczuciński W (2012) The post-depositional changes of the onshore 2004 tsunami deposits on the Andaman Sea coast of Thailand. Nat Hazards 60:115–133

    Article  Google Scholar 

  78. Toscano MA, Macintyre IG (2003) Corrected western Atlantic sea-level curve for the last 11,000 years based on calibrated 14C dates from Acropora palmata framework and intertidal mangrove peat. Coral Reefs 22:257–270

    Article  Google Scholar 

  79. Treece GD (1980) Bathymetric records of marine shelled Mollusca from the northeastern shelf and upper slope of Yucatan, Mexico. B Mar Sci 30:552–570

    Google Scholar 

  80. Uchida J-I, Fujiwara O, Hasegawa S, Kamataki T (2010) Sources and depositional processes of tsunami deposits: analysis using foraminiferal tests and hydrodynamic verification. Isl Arc 19:427–442

    Article  Google Scholar 

  81. Watt SG, Jaffe BE, Morton RA, Richmond BM, Gelfenbaum G (2010) Description of extreme-wave deposits on the northern coast of Bonaire, Netherlands Antilles. USGS Open-File Report 2010-1180

  82. Weiss MP (1979) A saline lagoon on Cayo Sal, Western Venezuela. Atoll Res Bull 232:1–33

    Article  Google Scholar 

  83. Weiss R (2008) Sediment grains moved by passing tsunami waves: tsunami deposits in deeper water. Mar Geol 250:251–257

    Article  Google Scholar 

  84. Weiss R, Bourgeois J (2012) Understanding sediments—reducing tsunami risk. Science 336:1117–1118

    PubMed  Article  CAS  Google Scholar 

  85. Westermann JH, Zonneveld JIS (1956) Photo-geological observations and land capability & land use survey of the Island of Bonaire (Netherlands Antilles). Koninklijk Institut voor de Tropen, Amsterdam

    Google Scholar 

Download references

Acknowledgments

Funding by the Deutsche Forschungsgemeinschaft (BR 877/26-1) is gratefully acknowledged. We highly appreciate the administrative and logistic support by DROB (Government of the Island Territory Bonaire/Department of Environment and Natural Resources) and STINAPA (Bonaire National Parks Foundation). Furthermore, we acknowledge the assistance in the field by Timo Willershäuser and in the lab by Karoline Messenzehl. Andreas Bolten kindly supported processing of bathymetric data. We thank Dietmar Keyser for supporting the identification of ostracods. Kirstin Jacobson is acknowledged for language editing. We are thankful for the thorough and constructive remarks of the associate editor, Claus-Dieter Hillenbrand, and the four reviewers: Michaela Spiske, David R. Tappin, Eduard G. Reinhardt and Gary M. McMurtry. This is a contribution to IGCP Project 588—Preparing for Coastal Change.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Max Engel.

Additional information

Communicated by: Claus-Dieter Hillenbrand

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1

(PDF 4096 kb)

Online Resource 2

(PDF 109 KB)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Engel, M., Brückner, H., Fürstenberg, S. et al. A prehistoric tsunami induced long-lasting ecosystem changes on a semi-arid tropical island—the case of Boka Bartol (Bonaire, Leeward Antilles). Naturwissenschaften 100, 51–67 (2013). https://doi.org/10.1007/s00114-012-0993-2

Download citation

Keywords

  • Palaeotsunamis
  • Caribbean Sea
  • Tsunami vs. storm deposits
  • Coastal evolution
  • Hazard assessment
  • Foraminifera
  • Ostracoda