Skip to main content
Log in

Mechanistic modelling of cancer: some reflections from software engineering and philosophy of science

  • Concepts & Synthesis
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

There is a growing interest in mathematical mechanistic modelling as a promising strategy for understanding tumour progression. This approach is accompanied by a methodological change of making research, in which models help to actively generate hypotheses instead of waiting for general principles to become apparent once sufficient data are accumulated. This paper applies recent research from philosophy of science to uncover three important problems of mechanistic modelling which may compromise its mainstream application, namely: the dilemma of formal and informal descriptions, the need to express degrees of confidence and the need of an argumentation framework. We report experience and research on similar problems from software engineering and provide evidence that the solutions adopted there can be transferred to the biological domain. We hope this paper can provoke new opportunities for further and profitable interdisciplinary research in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Anderson ARA (2005) A hybrid mathematical model of solid tumour invasion: the importance of cell adhesion. Math Med Biol 22:163–186

    Article  PubMed  Google Scholar 

  • Anderson ARA, Quaranta V (2008) Integrative mathematical oncology. Nat Rev Cancer 8:227–233

    Article  PubMed  CAS  Google Scholar 

  • Araujo RP, McElwain DLS (2004) A history of the study of solid tumour growth: the contribution of mathematical modelling. Bull Math Biol 66:1039–1091

    Article  PubMed  CAS  Google Scholar 

  • Bechtel W, Abrahamsen A (2005) Explanation: a mechanist alternative. Stud Hist Philos Biol Biomedical Sci 36(2):421–441

    Google Scholar 

  • Bos PD, Zhang XHF, Nadal C, Shu W, Gomis RR, Nguyen DX, Minn AJ, van de Vijver MJ, Gerald WL, Foekens JA, Massagué J (2009) Genes that mediate breast cancer metastasis to the brain. Nature 459:1005–1009

    Article  PubMed  CAS  Google Scholar 

  • Brú A, Albertos S, Subiza JL, López García-Asenjo J, Brú I (2003) The universal dynamics of tumor growth. Biophys J 85:2948–2961

    Article  PubMed  Google Scholar 

  • Cañete-Valdeón JM (2008) On the interpretation of mathematical entities in the formalisation of programming and modelling languages. Math Struct Comp Sci 18(6):1017–1030

    Article  Google Scholar 

  • Clarke E, Grumberg O, Peled DA (2000) Model checking. MIT Press, Cambridge, MA

  • Cooling MT (2011) CellML biological annotation metadata specification 2.0. Draft for metadata specification. The CellML Project. http://www.cellml.org/specifications/metadata/mcdraft/annotationspec

  • Craver CF (2006) When mechanistic models explain. Synthese 153(3):355–376

    Article  Google Scholar 

  • Farley A, Freeman K (1995) Towards formalizing dialectical argumentation. In: Proceedings of the 3rd International Conference of the Society for the Study of Argumentation 156–165

  • Fearon ER, Vogelstein B (1990) A genetic model for colorectal tumorigenesis. Cell 61:759–767

    Article  PubMed  CAS  Google Scholar 

  • Gatenby RA, Gillies RJ (2004) Why do cancers have high aerobic glycolysis? Nat Rev Cancer 4:891–899

    Article  PubMed  CAS  Google Scholar 

  • Gatenby RA, Maini PK (2002) Modelling a new angle on understanding cancer. Nature 420:462

    Article  PubMed  CAS  Google Scholar 

  • Gatenby RA, Maini PK (2003) Cancer summed up. Nature 421:321

    Article  PubMed  CAS  Google Scholar 

  • Giere RN (1988) Explaining science: a cognitive approach. University of Chicago Press, Chicago, IL

  • Giere RN (1999) Science without laws. University of Chicago Press, Chicago, IL

  • Giere RN (2006) Scientific perspectivism. University of Chicago Press, Chicago, IL

  • Glennan SS (2005) Modeling mechanisms. Stud Hist Philos Biol Biomedical Sci 36(2):443–464

    Google Scholar 

  • Haley CB, Moffett JD, Laney R, Nuseibeh B (2005) Proceedings of the 3rd Symposium on Requirements Engineering for Information Security. In: Arguing security: validating security requirements using structured argumentation

    Google Scholar 

  • Harel D (1987) Statecharts: a visual formalism for complex systems. Sci Com Program 8:231–274

    Article  Google Scholar 

  • Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500–544

    PubMed  CAS  Google Scholar 

  • Hucka M, Bergmann FT, Hoops S, Keating SM, Sahle S, Schaff JC, Smith LP, Wilkinson DJ (2010) The systems biology markup language (SBML). Nature Precedings. doi:10.1038/npre.2010.4959.1

  • Jackson MA (2001) Problem frames: analyzing and structuring software development problems. Addison-Wesley, Boston, MA

  • Komarova N (2005) Mathematical modeling of tumorigenesis: mission possible. Curr Opin Oncol 17:39–43

    Article  PubMed  Google Scholar 

  • Krogh A (1919) The number and distribution of capillaries in muscles with calculations of the oxygen pressure head necessary for supplying the tissue. J Physiol 52:409–415

    PubMed  CAS  Google Scholar 

  • Kugler H, Larjo A, Harel D (2009) Biocharts: a visual formalism for complex biological systems. J R Soc Interface 7(48):1015–1024

    Article  PubMed  Google Scholar 

  • Lamsweerde A van (2004) Goal-oriented requirements engineering: a roundtrip from research to practice. Keynote talk at the International Conference on Requirements Engineering RE’04. Kyoto, September 10

  • Lamsweerde A van (2009) Requirements engineering: from system goals to UML models to systems specifications. Wiley, Chichester, UK

  • Lee J, Lai KY (1991) What's in design rationale? Human-Com Interaction–Special Issue on Design Rationale 6:3–4

    Google Scholar 

  • Lloyd CM, Halstead MDB, Nielsen PF (2004) CellML. Prog Biophys Mol Biol 85:433–450

    Article  PubMed  CAS  Google Scholar 

  • Machamer P, Darden L, Craver (2000) Thinking about mechanisms. Philos Sci 67:1–25

    Article  Google Scholar 

  • Maini PK, Gatenby RA (2006) Some mathematical modelling challenges and approaches in cancer. In: Nagl, S. (ed) Cancer bioinformatics: from therapy design to treatment. 95–107, Wiley, Chichester, UK

  • Manna Z, Pnueli A (1992) The temporal logic of reactive and concurrent systems. Springer-Verlag, New York, NY

  • Matthewson J, Calcott B (2011) Mechanistic models of population-level phenomena. Biol Philos 26:737–756

    Article  Google Scholar 

  • Reed C, Walton D (2003) Argumentation schemes in argument-as-process and argument-as-product. In: Proceedings of the conference celebrating Informal Logic @25, Windsor, ON

  • Schaffner KF (2007) Theories models, and equations in systems biology. In: FC Boogerd, FJ Bruggeman, J-HS Hofmeyr and H.V. Westerhoff (eds). Elsevier, Amsterdam

  • Smallbone K, Gatenby RA, Gillies RJ, Maini PK, Gavaghan DJ (2007) Metabolic changes during carcinogenesis: potential impact on invasiveness. J Theor Biol 244:703–713

    Article  PubMed  CAS  Google Scholar 

  • Thomlinson RH, Gray LH (1955) The histological structure of some human lung cancers and the possible implications for radiotherapy. Br J Cancer 9:539–549

    Article  PubMed  CAS  Google Scholar 

  • Toulmin S (1958) The uses of argument. Cambridge University Press, Cambridge, NY

  • von Bertalanffy L (1968) General system theory. Braziller, New York

    Google Scholar 

  • Waddington CH (1968) Introduction. In: Towards a theoretical biology. In: Waddington CH (ed) vol. 1. Chicago, IL: Aldine Press

  • Walton D, Reed C, Macagno F 2008 Argumentation schemes. Cambridge University Press, New York, NY

  • Weinberg RA (2007) Using maths to tackle cancer. Nature 449:978–981

    Article  CAS  Google Scholar 

  • Woodward J (2002) What is a mechanism? A counterfactual account. Philos Sci 69(3):S366–S377

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Editor-in-Chief and the anonymous referees for their useful suggestions. Special thanks are due to Prof. Michael Jackson for his comments and encouragement regarding this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José M. Cañete-Valdeón.

Additional information

Communicated by: Sven Thatje

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cañete-Valdeón, J.M., Wieringa, R. & Smallbone, K. Mechanistic modelling of cancer: some reflections from software engineering and philosophy of science. Naturwissenschaften 99, 973–983 (2012). https://doi.org/10.1007/s00114-012-0991-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-012-0991-4

Keywords

Navigation