, Volume 100, Issue 1, pp 3–19 | Cite as

Cell-to-cell communication in plants, animals, and fungi: a comparative review

  • Sandra Bloemendal
  • Ulrich KückEmail author


Cell-to-cell communication is a prerequisite for differentiation and development in multicellular organisms. This communication has to be tightly regulated to ensure that cellular components such as organelles, macromolecules, hormones, or viruses leave the cell in a precisely organized way. During evolution, plants, animals, and fungi have developed similar ways of responding to this biological challenge. For example, in higher plants, plasmodesmata connect adjacent cells and allow communication to regulate differentiation and development. In animals, two main general structures that enable short- and long-range intercellular communication are known, namely gap junctions and tunneling nanotubes, respectively. Finally, filamentous fungi have also developed specialized structures called septal pores that allow intercellular communication via cytoplasmic flow. This review summarizes the underlying mechanisms for intercellular communication in these three eukaryotic groups and discusses its consequences for the regulation of differentiation and developmental processes.


Plasmodesmata Gap junctions Septal pores Tunneling nanotubes Cell-to-cell communication 



We thank Beth Richardson (University of Georgia, USA) for the generous gift of Fig. 2a and Michelle Momany (University of Georgia, USA) for establishing the contact. We also want to thank Robert Bauer (Tübingen, Germany) for providing Fig. 2b and Minou Nowrousian and Ines Teichert for critical reading of the manuscript. We are grateful to our anonymous reviewers, who provided highly valuable suggestions for improving this review.


  1. Abounit S, Zurzolo C (2012) Wiring through tunneling nanotubes—from electrical signals to organelle transfer. J Cell Sci 125:1089–1098PubMedCrossRefGoogle Scholar
  2. Ahmad S, Chen S, Sun J, Lin X (2003) Connexins 26 and 30 are co-assembled to form gap junctions in the cochlea of mice. Biochem Biophys Res Commun 307:362–368PubMedCrossRefGoogle Scholar
  3. Ai X, Pogwizd SM (2005) Connexin 43 downregulation and dephosphorylation in nonischemic heart failure is associated with enhanced colocalized protein phosphatase type 2A. Circ Res 96:54–63PubMedCrossRefGoogle Scholar
  4. Barton DA, Cole L, Collings DA, Liu DYT, Smith PMC, Day DA, Overall RL (2011) Cell-to-cell transport via the lumen of the endoplasmic reticulum. Plant J 66:806–817PubMedCrossRefGoogle Scholar
  5. Bauer R, Begerow D, Sampaio JP, Weiß M, Oberwinkler F (2006) The simple-septate basidiomycetes: a synopsis. Mycol Prog 5:41–66CrossRefGoogle Scholar
  6. Beardslee MA, Laing JG, Beyer EC, Saffitz JE (1998) Rapid turnover of connexin43 in the adult rat heart. Circ Res 83:629–635PubMedCrossRefGoogle Scholar
  7. Beckett A (1981a) The ultrastructure and behaviour of nuclei and associated structures within the meiotic cells of Euascomycetes. In: Gull K, Oliver SG (eds) The fungal nucleus: structure, biochemistry and genetics. Cambridge University Press, Cambridge, pp 37–61Google Scholar
  8. Beckett A (1981b) The ultrastructure of septal pores and associated structures in the ascogenous hyphae and asci of Sordaria humana. Protoplasma 107:127–147CrossRefGoogle Scholar
  9. Benedetti EL, Emmelot P (1965) Electron microscopic observations on negatively stained plasma membranes isolated from rat liver. J Cell Biol 26:299–305PubMedCrossRefGoogle Scholar
  10. Bergoffen J, Scherer SS, Wang S, Oronzi Scott M, Bone LJ, Paul DL, Chen K, Lensch MW, Chance PF, Fischbeck KH (1993) Connexin mutations in X-linked Charcot–Marie–Tooth disease. Science 262:2039–2042PubMedCrossRefGoogle Scholar
  11. Berns MW, Aist JR, Wright WH, Liang H (1992) Optical trapping in animal and fungal cells using a tunable, near-infrared titanium-sapphire laser. Exp Cell Res 198:375–378PubMedCrossRefGoogle Scholar
  12. Bloemendal S, Lord KM, Rech C, Hoff B, Engh I, Read ND, Kück U (2010) A mutant defective in sexual development produces aseptate ascogonia. Eukaryot Cell 9:1856–1866PubMedCrossRefGoogle Scholar
  13. Bloemendal S, Bernhards Y, Bartho K, Dettmann A, Voigt O, Teichert I, Seiler S, Wolters DA, Pöggeler S, Kück U (2012) A homologue of the human STRIPAK complex controls sexual development in fungi. Mol Microbiol 84:310–323PubMedCrossRefGoogle Scholar
  14. Bracker CE, Butler EE (1964) Function of septal pore apparatus in Rhizoctonia solani during protoplasmic streaming. J Cell Biol 21:152–157PubMedCrossRefGoogle Scholar
  15. Britz-Cunningham SH, Shah MM, Zuppan CW, Fletcher WH (1995) Mutations of the Connexin43 gap-junction gene in patients with heart malformations and defects of laterality. N Engl J Med 332:1323–1329PubMedCrossRefGoogle Scholar
  16. Bucher GL, Tarina C, Heinlein M, Di Serio F, Meins F Jr, Iglesias VA (2001) Local expression of enzymatically active class I beta-1,3-glucanase enhances symptoms of TMV infection in tobacco. Plant J 28:361–369PubMedCrossRefGoogle Scholar
  17. Buller AHR (1933) Researches on fungi, vol 5. Longman, LondonGoogle Scholar
  18. Burch-Smith TM, Stonebloom S, Xu M, Zambryski PC (2011) Plasmodesmata during development: re-examination of the importance of primary, secondary, and branched plasmodesmata structure versus function. Protoplasma 248:61–74PubMedCrossRefGoogle Scholar
  19. Caneparo L, Pantazis P, Dempsey W, Fraser SE (2011) Intercellular bridges in vertebrate gastrulation. PLoS One 6:e20230PubMedCrossRefGoogle Scholar
  20. Carr DJ (1976) Historical perspectives on plasmodesmata. In: Gunning BES, Robarts AW (eds) Intercellular communication in plants: studies on plasmodesmata. Springer, Heidelberg, pp 291–295CrossRefGoogle Scholar
  21. Chen P, Hübner W, Spinelli MA, Chen BK (2007) Predominant mode of human immunodeficiency virus transfer between T cells is mediated by sustained Env-dependent neutralization-resistant virological synapses. J Virol 81:12582–12595PubMedCrossRefGoogle Scholar
  22. Chinnery HR, Pearlman E, McMenamin PG (2008) Cutting edge: membrane nanotubes in vivo: a feature of MHC class II + cells in the mouse cornea. J Immunol 180:5779–5783PubMedGoogle Scholar
  23. Cilia ML, Jackson D (2004) Plasmodesmata form and function. Curr Opin Cell Biol 16:500–506PubMedCrossRefGoogle Scholar
  24. Citovsky V, Zambryski P (2000) Systemic transport of RNA in plants. Trends Plant Sci 5:52–54PubMedCrossRefGoogle Scholar
  25. Contreras JE, Sánchez HA, Véliz LP, Bukauskas FF, Bennett MV, Sáez JC (2004) Role of connexin-based gap junction channels and hemichannels in ischemia-induced cell death in nervous tissue. Brain Res Rev 47:290–303PubMedCrossRefGoogle Scholar
  26. Corbesier L, Vincent C, Jang S, Fornara F, Fan Q, Searle I, Giakountis A, Farrona S, Gissot L, Turnbull C, Coupland G (2007) FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316:1030–1033PubMedCrossRefGoogle Scholar
  27. Das Sarma J, Wang F, Koval M (2002) Targeted gap junction protein constructs reveal connexin-specific differences in oligomerization. J Biol Chem 277:20911–20918PubMedCrossRefGoogle Scholar
  28. Davis DM, Sowinski S (2008) Membrane nanotubes: dynamic long-distance connections between animal cells. Nat Rev Mol Cell Biol 9:431–436PubMedCrossRefGoogle Scholar
  29. de Bary A (1884) Vergleichende Morphologie und Biologie der Pilze, Mycetozoen und Bakterien. Engelmann, LeipzigCrossRefGoogle Scholar
  30. Deom CM, Oliver MJ, Beachy RN (1987) The 30-kilodalton gene product of tobacco mosaic virus potentiates virus movement. Science 237:389–394PubMedCrossRefGoogle Scholar
  31. Dhavale T, Jedd G (2007) The fungal Woronin body. In: Howard RJ, Gow NAR (eds) The Mycota VIII. Springer, Heidelberg, pp 87–94Google Scholar
  32. Dimitrov DS, Willey RL, Sato H, Chang LJ, Blumenthal R, Martin MA (1993) Quantitation of human immunodeficiency virus type 1 infection kinetics. J Virol 67:2182–2190PubMedGoogle Scholar
  33. Ding B (1998) Intercellular protein trafficking through plasmodesmata. Plant Mol Biol 38:279–310PubMedCrossRefGoogle Scholar
  34. Ding B, Lucas WJ (1996) Secondary plasmodesmata: biogenesis, special functions, and evolution. In: Smallwood M, Knox P, Bowles D (eds) Membranes: specialized functions in plants. BIOS Scientific, Oxford, pp 489–506Google Scholar
  35. Ding B, Haudenshield JS, Willmitzer L, Lucas WJ (1993) Correlation between arrested secondary plasmodesmal development and onset of accelerated leaf senescence in yeast acid invertase transgenic tobacco plants. Plant J 4:179–189PubMedCrossRefGoogle Scholar
  36. Dolan L, Janmaat K, Willemsen V, Linstead P, Poethig S, Roberts K, Scheres B (1993) Cellular organisation of the Arabidopsis thaliana root. Development 119:71–84PubMedGoogle Scholar
  37. Ehlers K, Kollmann R (2001) Primary and secondary plasmodesmata: structure, origin, and functioning. Protoplasma 216:1–30PubMedCrossRefGoogle Scholar
  38. Elias LAB, Kriegstein AR (2008) Gap junctions: multifaceted regulators of embryonic cortical development. Trends Neurosci 31:243–250PubMedCrossRefGoogle Scholar
  39. Engh I, Würtz C, Witzel-Schlömp K, Zhang HY, Hoff B, Nowrousian M, Rottensteiner H, Kück U (2007) The WW domain protein PRO40 is required for fungal fertility and associates with Woronin bodies. Eukaryot Cell 6:831–843PubMedCrossRefGoogle Scholar
  40. Esser K (1982) Cryptogams—cyanobacteria, algae, fungi, lichens. Cambridge University Press, LondonGoogle Scholar
  41. Eugenin EA, Gaskill PJ, Berman JW (2009) Tunneling nanotubes (TNT) are induced by HIV-infection of macrophages: a potential mechanism for intercellular HIV trafficking. Cell Immunol 254:142–148PubMedCrossRefGoogle Scholar
  42. Faulkner CR, Blackman LM, Cordwell SJ, Overall RL (2005) Proteomic identification of putative plasmodesmatal proteins from Chara corallina. Proteomics 5:2866–2875PubMedCrossRefGoogle Scholar
  43. Faulkner C, Akman OE, Bell K, Jeffree C, Oparka K (2008) Peeking into pit fields: a multiple twinning model of secondary plasmodesmata formation in tobacco. Plant Cell 20:1504–1518PubMedCrossRefGoogle Scholar
  44. Fisher DB (1999) The estimated pore diameter for plasmodesmal channels in the Abutilon nectary trichome should be about 4 nm, rather than 3 nm. Planta 208:299–300CrossRefGoogle Scholar
  45. Fleissner A, Glass NL (2007) SO, a protein involved in hyphal fusion in Neurospora crassa, localizes to septal plugs. Eukaryot Cell 6:84–94PubMedCrossRefGoogle Scholar
  46. Fleissner A, Sarkar S, Jacobson DJ, Roca MG, Read ND, Glass NL (2005) The so locus is required for vegetative cell fusion and postfertilization events in Neurospora crassa. Eukaryot Cell 4:920–930PubMedCrossRefGoogle Scholar
  47. Franceschi VR, Ding B, Lucas WJ (1994) Mechanism of plasmodesmata formation in characean algae in relation to evolution of intercellular communication in higher plants. Planta 192:347–358CrossRefGoogle Scholar
  48. Gerdes HH, Carvalho RN (2008) Intercellular transfer mediated by tunneling nanotubes. Curr Opin Cell Biol 20:470–475PubMedCrossRefGoogle Scholar
  49. Gerdes HH, Bukoreshtliev NV, Barroso JFV (2007) Tunneling nanotubes: a new route for the exchange of components between animal cells. FEBS Lett 581:2194–2201PubMedCrossRefGoogle Scholar
  50. Giesy RM, Day PR (1965) Septal pores of Coprinus lagopus in relation to nuclear migration. Am J Bot 52:287–293CrossRefGoogle Scholar
  51. Goodenough DA (1974) Bulk isolation of mouse hepatocyte gap junctions. J Cell Biol 61:557–563PubMedCrossRefGoogle Scholar
  52. Goodenough DA, Paul DL (2003) Beyond the gap: functions of unpaired connexon channels. Nat Rev Mol Cell Biol 4:285–294PubMedCrossRefGoogle Scholar
  53. Gousset K, Schiff E, Langevin C, Marijanovic Z, Caputo A, Browman DT, Chenouard N, de Chaumont F, Martino A, Enninga J, Olivo-Marin JC, Männel D, Zurzolo C (2009) Prions hijack tunnelling nanotubes for intercellular spread. Nat Cell Biol 11:328–336PubMedCrossRefGoogle Scholar
  54. Graham LE, Kaneko Y (1991) Subcellular structures of relevance to the origin of land plants (Embryophytes) from green algae. Crit Rev Plant Sci 10:323–342CrossRefGoogle Scholar
  55. Graham LE, Delwiche CF, Mishler BD (1991) Phylogenetic connections between the ‘green algae’ and the ‘bryophytes’. Adv Bryol 4:213–244Google Scholar
  56. Grebe M (2012) The patterning of epidermal hairs in Arabidopsis—updated. Curr Opin Plant Biol 15:31–37PubMedCrossRefGoogle Scholar
  57. Grifa A, Wagner CA, D’Ambrosio L, Melchionda S, Bernardi F, Lopez-Bigas N, Rabionet R, Arbones M, Monica MD, Estivill X, Zelante L, Lang F, Gasparini P (1999) Mutations in GJB6 cause nonsyndromic autosomal dominant deafness at DFNA3 locus. Nat Genet 23:16–18PubMedGoogle Scholar
  58. Guého E, Smith MT, de Hoog GS, Billon-Grand G, Christen R, Batenburg-van der Vegte WH (1992) Contributions to a revision of the genus Trichosporon. AntonLeeuw 61:289–316Google Scholar
  59. Gull K (1976) Differentiation of septal ultrastructure according to cell type in the basidiomycete, Agrocybe praecox. J Ultrastruct Res 54:89–94PubMedCrossRefGoogle Scholar
  60. Gull K (1978) Form and function of septa in filamentous fungi. In: Smith JE, Berry DR (eds) The filamentous fungi. III. Developmental mycology. Wiley, New York, pp 78–93Google Scholar
  61. Gunning BES, Robarts AW (1976) Intercellular communication in plants: studies on plasmodesmata. Springer, BerlinCrossRefGoogle Scholar
  62. Gurke S, Barroso JFV, Gerdes HH (2008) The art of cellular communication: tunneling nanotubes bridge the divide. Histochem Cell Biol 129:539–550PubMedCrossRefGoogle Scholar
  63. Guseman JM, Lee JS, Bogenschutz NL, Peterson KM, Virata RE, Xie B, Kanaoka MM, Hong ZL, Torii KU (2010) Dysregulation of cell-to-cell connectivity and stomatal patterning by loss-of-function mutation in Arabidopsis CHORUS (GLUCAN SYNTHASE-LIKE 8). Development 137:1731–1741PubMedCrossRefGoogle Scholar
  64. Harris AL (2001a) Emerging issues of connexin channels: biophysics fills the gap. Q Rev Biophys 34:325–472PubMedGoogle Scholar
  65. Harris SD (2001b) Septum formation in Aspergillus nidulans. Curr Opin Microbiol 4:736–739PubMedCrossRefGoogle Scholar
  66. Hashimoto T, Kishi T, Yoshida N (1964) Demonstration of microspores in fungal cross-wall. Nature 202:1353PubMedCrossRefGoogle Scholar
  67. Hashimoto T, Morgan J, Conti SF (1973) Morphogenesis and ultrastructure of Geotrichum candidum septa. J Bacteriol 116:447–455PubMedGoogle Scholar
  68. Heath MC, Heath IB (1975) Ultrastructural changes associated with the haustorial mother cell septum during haustorium formation in Uromyces phaseoli var. vignae. Protoplasma 84:297–314CrossRefGoogle Scholar
  69. Helariutta Y, Fukaki H, Wysocka-Diller J, Nakajima K, Jung J, Sena G, Hauser MT, Benfey PN (2000) The SHORT-ROOT gene controls radial patterning of the Arabidopsis root through radial signaling. Cell 101:555–567PubMedCrossRefGoogle Scholar
  70. Hepler PK (1982) Endoplasmic reticulum in the formation of the cell plate and plasmodesmata. Protoplasma 111:121–133CrossRefGoogle Scholar
  71. Hibbett DS, Binder M, Bischoff JF, Blackwell M, Cannon PF, Eriksson OE, Huhndorf S, James T, Kirk PM, Lücking R, Lumbsch HT, Lutzoni F, Matheny PB, Mclaughlin DJ, Powell MJ, Redhead S, Schoch CL, Spatafora JW, Stalpers JA, Vilgalys R, Aime MC, Aptroot A, Bauer R, Begerow D, Benny GL, Castlebury LA, Crous PW, Dai YC, Gams W, Geiser DM, Griffith GW, Gueidan C, Hawksworth DL, Hestmark G, Hosaka K, Humber RA, Hyde KD, Ironside JE, Koljalg U, Kurtzman CP, Larsson KH, Lichtwardt R, Longcore J, Miadlikowska J, Miller A, Moncalvo JM, Mozley-Standridge S, Oberwinkler F, Parmasto E, Reeb V, Rogers JD, Roux C, Ryvarden L, Sampaio JP, Schüssler A, Sugiyama J, Thorn RG, Tibell L, Untereiner WA, Walker C, Wang Z, Weir A, Weiss M, White MM, Winka K, Yao YJ, Zhang N (2007) A higher-level phylogenetic classification of the fungi. Mycol Res 111:509–547PubMedCrossRefGoogle Scholar
  72. Huang T, Böhlenius H, Eriksson S, Parcy F, Nilsson O (2005) The mRNA of the Arabidopsis gene FT moves from leaf to shoot apex and induces flowering. Science 309:1694–1696PubMedCrossRefGoogle Scholar
  73. Jackson D (2002) Double labeling of KNOTTED1 mRNA and protein reveals multiple potential sites of protein trafficking in the shoot apex. Plant Physiol 129:1423–1429PubMedCrossRefGoogle Scholar
  74. Jackson D, Veit B, Hake S (1994) Expression of maize Knotted1 related homeobox genes in the shoot apical meristem predicts patterns of morphogenesis in the vegetative shoot. Development 120:405–413Google Scholar
  75. Jedd G (2010) Fungal evo-devo: organelles and multicellular complexity. Trends Cell Biol 21:12–19PubMedCrossRefGoogle Scholar
  76. Jedd G, Chua NH (2000) A new self-assembled peroxisomal vesicle required for efficient resealing of the plasma membrane. Nat Cell Biol 2:226–231PubMedCrossRefGoogle Scholar
  77. Jorgensen RA, Atkinson RG, Forster RLS, Lucas WJ (1998) An RNA-based information superhighway in plants. Science 279:1486–1487PubMedCrossRefGoogle Scholar
  78. Kelsell DP, Dunlop J, Stevens HP, Lench NJ, Liang JN, Parry G, Mueller RF, Leigh IM (1997) Connexin 26 mutations in hereditary non-syndromic sensorineural deafness. Nature 387:80–83PubMedCrossRefGoogle Scholar
  79. Kim JY (2005) Regulation of short-distance transport of RNA and protein. Curr Opin Plant Biol 8:45–52PubMedCrossRefGoogle Scholar
  80. Kim I, Cho E, Crawford K, Hempel FD, Zambryski PC (2005a) Cell-to-cell movement of GFP during embryogenesis and early seedling development in Arabidopsis. Proc Natl Acad Sci USA 102:2227–2231PubMedCrossRefGoogle Scholar
  81. Kim I, Kobayashi K, Cho E, Zambryski PC (2005b) Subdomains for transport via plasmodesmata corresponding to the apical–basal axis are established during Arabidopsis embryogenesis. Proc Natl Acad Sci USA 102:11945–11950PubMedCrossRefGoogle Scholar
  82. Kizana E, Cingolani E, Marbán E (2009) Non-cell-autonomous effects of vector-expressed regulatory RNAs in mammalian heart cells. Gene Ther 16:1163–1168PubMedCrossRefGoogle Scholar
  83. Kollmann R, Glockmann C (1985) Studies on graft unions. I. Plasmodesmata between cells of plants belonging to different unrelated taxa. Protoplasma 124:224–235CrossRefGoogle Scholar
  84. Kollmann R, Glockmann C (1991) Studies on graft unions. III. On the mechanism of secondary formation of plasmodesmata at the graft interface. Protoplasma 165:71–85CrossRefGoogle Scholar
  85. Kong D, Karve R, Willet A, Chen MK, Oden J, Shpak ED (2012) Regulation of plasmodesmatal permeability and stomatal patterning by the glycosyltransferase-like protein KOBITO1. Plant Physiol 159:156–168PubMedCrossRefGoogle Scholar
  86. Kurata T, Ishida T, Kawabata-Awai C, Noguchi M, Hattori S, Sano R, Nagasaka R, Tominaga R, Koshino-Kimura Y, Kato T, Sato S, Tabata S, Okada K, Wada T (2005) Cell-to-cell movement of the CAPRICE protein in Arabidopsis root epidermal cell differentiation. Development 132:5387–5398PubMedCrossRefGoogle Scholar
  87. Kuratsu M, Taura A, Shoji J, Kikuchi S, Arioka M, Kitamoto K (2007) Systematic analysis of SNARE localization in the filamentous fungus Aspergillus oryzae. Fungal Genet Biol 44:1310–1323PubMedCrossRefGoogle Scholar
  88. Kwiatkowska M (2003) Plasmodesmal changes are related to different developmental stages of antheridia of Chara species. Protoplasma 222:1–11PubMedCrossRefGoogle Scholar
  89. Kwiatkowska M, Maszewski J (1976) Plasmodesmata between synchronously and asynchronously developing cells of antheridial filaments of Chara vulgaris L. Protoplasma 87:317–327CrossRefGoogle Scholar
  90. Laird DW (2006) Life cycle of connexins in health and disease. Biochem J 394:527–543PubMedCrossRefGoogle Scholar
  91. Laird DW (2010) The gap junction proteome and its relationship to disease. Trends Cell Biol 20:92–101PubMedCrossRefGoogle Scholar
  92. Laux T, Wurschum T, Breuninger H (2004) Genetic regulation of embryonic pattern formation. Plant Cell 16:190–202CrossRefGoogle Scholar
  93. Leithe E, Rivedal E (2007) Ubiquitination of gap junction proteins. J Membr Biol 217:43–51PubMedCrossRefGoogle Scholar
  94. Leonard DA, Zaitlin M (1982) A temperature-sensitive strain of tobacco mosaic virus defective in cell-to-cell movement generates an altered viral-coded protein. Virology 117:416–424PubMedCrossRefGoogle Scholar
  95. Levy A, Erlanger M, Rosenthal M, Epel BL (2007a) A plasmodesmata-associated beta-1,3-glucanase in Arabidopsis. Plant J 49:669–682PubMedCrossRefGoogle Scholar
  96. Levy A, Guenoune-Gelbart D, Epel BL (2007b) beta-1,3-Glucanases: plasmodesmal gate keepers for intercellular communication. Plant Signal Behav 2:404–407PubMedCrossRefGoogle Scholar
  97. Lim PK, Bliss SA, Patel SA, Taborga M, Dave MA, Gregory LA, Greco SJ, Bryan M, Patel PS, Rameshwar P (2011) Gap junction-mediated import of microRNA from bone marrow stromal cells can elicit cell cycle quiescence in breast cancer cells. Cancer Res 71:1550–1560PubMedCrossRefGoogle Scholar
  98. Lo CW, Gilula NB (1979a) Gap junctional communication in the post-implantation mouse embryo. Cell 18:411–422PubMedCrossRefGoogle Scholar
  99. Lo CW, Gilula NB (1979b) Gap junctional communication in the pre-implantation mouse embryo. Cell 18:399–409PubMedCrossRefGoogle Scholar
  100. Lo CW, Gilula NB (2000) Gap junctions in development. In: Hertzberg EL (ed) Gap junctions. Elsevier, Amsterdam, pp 193–219CrossRefGoogle Scholar
  101. Lough TJ, Lucas WJ (2006) Integrative plant biology: role of phloem long-distance macromolecular trafficking. Annu Rev Plant Biol 57:203–232PubMedCrossRefGoogle Scholar
  102. Lucas WJ, Ding B, Van der Schoot C (1993) Plasmodesmata and the supracellular nature of plants. New Phytol 125:435–476CrossRefGoogle Scholar
  103. Lucas WJ, Bouché-Pillon S, Jackson DP, Nguyen L, Baker L, Ding B, Hake S (1995) Selective trafficking of KNOTTED1 homeodomain protein and its mRNA through plasmodesmata. Science 270:1980–1983PubMedCrossRefGoogle Scholar
  104. Lucas WJ, Yoo BC, Kragler F (2001) RNA as a long-distance information macromolecule in plants. Nat Rev Mol Cell Biol 2:849–857PubMedCrossRefGoogle Scholar
  105. Lucas WJ, Ham BK, Kim JY (2009) Plasmodesmata—bridging the gap between neighboring plant cells. Trends Cell Biol 19:495–503PubMedCrossRefGoogle Scholar
  106. Lutzoni F, Kauff F, Cox CJ, McLaughlin D, Celio G, Dentinger B, Padamsee M, Hibbett D, James TY, Baloch E, Grube M, Reeb V, Hofstetter V, Schoch C, Arnold AE, Miadlikowska J, Spatafora J, Johnson D, Hambleton S, Crockett M, Shoemaker R, Hambleton S, Crockett M, Shoemaker R, Sung GH, Lücking R, Lumbsch T, O’Donnell K, Binder M, Diederich P, Ertz D, Gueidan C, Hansen K, Harris RC, Hosaka K, Lim YW, Matheny B, Nishida H, Pfister D, Rogers J, Rossman A, Schmitt I, Sipman H, Stone J, Sugiyama J, Yahr R, Vilgalys R (2004) Assembling the fungal tree of life: progress, classification and evolution of subcellular traits. Am J Bot 91:1446–1480PubMedCrossRefGoogle Scholar
  107. Maeda S, Tsukihara T (2011) Structure of the gap junction channel and its implications for its biological functions. Cell Mol Life Sci 68:1115–1129PubMedCrossRefGoogle Scholar
  108. Markham PG (1994) Occlusions of septal pores in filamentous fungi. Mycol Res 98:1089–1106CrossRefGoogle Scholar
  109. Markham P, Collinge AJ (1987) Woronin bodies of filamentous fungi. FEMS Microbiol Rev 46:1–11CrossRefGoogle Scholar
  110. Maruyama J, Kitamoto K (2007) Differential distribution of the endoplasmic reticulum network in filamentous fungi. FEMS Microbiol Lett 272:1–7PubMedCrossRefGoogle Scholar
  111. Maruyama J, Kikuchi S, Kitamoto K (2006) Differential distribution of the endoplasmic reticulum network as visualized by the BipA-EGFP fusion protein in hyphal compartments across the septum of the filamentous fungus, Aspergillus oryzae. Fungal Genet Biol 43:642–654PubMedCrossRefGoogle Scholar
  112. Marzo L, Gousset K, Zurzolo C (2012) Multifaceted roles of tunneling nanotubes in intercellular communication. Front Physiol 3:1–14CrossRefGoogle Scholar
  113. Maule AJ (2008) Plasmodesmata: structure, function and biogenesis. Curr Opin Plant Biol 11:680–686PubMedCrossRefGoogle Scholar
  114. McLaughlin DJ, Frieders EM, Lü H (1995) A microscopist’s view of heterobasidiomycete phylogeny. Stud Mycol 38:91–109Google Scholar
  115. Meshi T, Watanabe Y, Saito T, Sugimoto A, Maeda T, Okada Y (1987) Function of the 30-kd protein of tobacco mosaic virus: involvement in cell-to-cell movement and dispensability for replication. EMBO J 6:2557–2563PubMedGoogle Scholar
  116. Millard TH, Martin P (2008) Dynamic analysis of filopodial interactions during the zippering phase of Drosophila dorsal closure. Development 135:621–626PubMedCrossRefGoogle Scholar
  117. Momany M, Richardson EA, Van Sickle C, Jedd G (2002) Mapping Woronin body position in Aspergillus nidulans. Mycologia 94:260–266PubMedCrossRefGoogle Scholar
  118. Müller WH, Montijn RC, Humbel BM, van Aelst AC, Boon EJ, van der Krift TP, Boekhout T (1998) Structural differences between two types of basidiomycete septal pore caps. Microbiology 144:1721–1730PubMedCrossRefGoogle Scholar
  119. Müller WH, Koster AJ, Humbel BM, Ziese U, Verkleij AJ, van Aelst AC, van der Krift TP, Montijn RC, Boekhout T (2000) Automated electron tomography of the septal pore cap in Rhizoctonia solani. J Struct Biol 131:10–18PubMedCrossRefGoogle Scholar
  120. Nakajima K, Sena G, Nawy T, Benfey PN (2001) Intercellular movement of the putative transcription factor SHR in root patterning. Nature 413:307–311PubMedCrossRefGoogle Scholar
  121. Ng SK, Liu FF, Lai JL, Low W, Jedd G (2009) A tether for Woronin body inheritance is associated with evolutionary variation in organelle positioning. PLoS Genet 5:e1000521PubMedCrossRefGoogle Scholar
  122. Önfelt B, Nedvetzki S, Benninger RK, Purbhoo MA, Sowinski S, Hume AN, Seabra MC, Neil MA, French PM, Davis DM (2006) Structurally distinct membrane nanotubes between human macrophages support long-distance vesicular traffic or surfing of bacteria. J Immunol 177:8476–8483PubMedGoogle Scholar
  123. Oparka KJ (2004) Getting the message across: how do plant cells exchange macromolecular complexes? Trends Plant Sci 9:33–41PubMedCrossRefGoogle Scholar
  124. Overall RL, Wolfe J, Gunning BES (1982) Inter-cellular communication in Azolla roots: I. Ultrastructure of plasmodesmata. Protoplasma 111:134–150CrossRefGoogle Scholar
  125. Perbal MC, Haughn G, Saedler H, Schwarz-Sommer Z (1996) Non-cell-autonomous function of the Antirrhinum floral homeotic proteins DEFICIENS and GLOBOSA is exerted by their polar cell-to-cell trafficking. Development 122:3433–3441PubMedGoogle Scholar
  126. Pfenniger A, Wohlwend A, Kwak BR (2011) Mutations in connexin genes and disease. Eur J Clin Invest 41:103–116PubMedCrossRefGoogle Scholar
  127. Phelan P (2005) Innexins: members of an evolutionarily conserved family of gap-junction proteins. Biochim Biophys Acta 1711:225–245PubMedCrossRefGoogle Scholar
  128. Phelan P, Stebbings LA, Baines RA, Bacon JP, Davies JA, Ford C (1998) Drosophila Shaking-B protein forms gap junctions in paired Xenopus oocytes. Nature 391:181–184PubMedCrossRefGoogle Scholar
  129. Pickett-Heaps JD (1968) Ultrastructure and differentiation in Chara sp. III: Formation of the antheridium. Aust J Biol Sci 21:255–274Google Scholar
  130. Powell MJ (1974) Fine structure of plasmodesmata in a chytrid. Mycologia 66:606–614CrossRefGoogle Scholar
  131. Pyrgaki C, Trainor P, Hadjantonakis AK, Niswander L (2010) Dynamic imaging of mammalian neural tube closure. Dev Biol 344:941–947PubMedCrossRefGoogle Scholar
  132. Ramachandran S, Xie LH, John SA, Subramaniam S, Lal R (2007) A novel role for connexin hemichannel in oxidative stress and smoking-induced cell injury. PLoS One 2:e712PubMedCrossRefGoogle Scholar
  133. Raudaskoski M, Rupes I, Timonen S (1991) Immunofluorescence microscopy of the cytoskeleton in filamentous fungi after quick-freezing and low-temperature fixation. Exp Mycol 15:167–173CrossRefGoogle Scholar
  134. Reaume AG, Desousa PA, Kulkarni S, Langille BL, Zhu DG, Davies TC, Juneja SC, Kidder GM, Rossant J (1995) Cardiac malformation in neonatal mice lacking connexin43. Science 267:1831–1834PubMedCrossRefGoogle Scholar
  135. Robards AW, Lucas WJ (1990) Plasmodesmata. Annu Rev Plant Phys 41:369–419CrossRefGoogle Scholar
  136. Robertson JD (1963) Occurrence of a subunit pattern in unit membranes of club endings in mauthner cell synapses in goldfish brains. J Cell Biol 19:201–221PubMedCrossRefGoogle Scholar
  137. Ruiz-Medrano R, Xoconostle-Cázares B, Kragler F (2004) The plasmodesmatal transport pathway for homoeotic proteins, silencing signals and viruses. Curr Opin Plant Biol 7:641–650PubMedCrossRefGoogle Scholar
  138. Runeberg P, Raudaskoski M, Virtanen I (1986) Cytoskeletal elements in the hyphae of the homobasidiomycete Schizophyllum commune visualized with indirect immunofluorescence and NBD-phallacidin. Eur J Cell Biol 41:25–32Google Scholar
  139. Rustom A, Saffrich R, Markovic I, Walther P, Gerdes HH (2004) Nanotubular highways for intercellular organelle transport. Science 303:1007–1010PubMedCrossRefGoogle Scholar
  140. Scherer SS, Xu YT, Nelles E, Fischbeck K, Willecke K, Bone LJ (1998) Connexin32-null mice develop demyelinating peripheral neuropathy. Glia 24:8–20PubMedCrossRefGoogle Scholar
  141. Scheres B, Wolkenfelt H, Willemsen V, Terlouw M, Lawson E, Dean C, Weisbeek P (1994) Embryonic origin of the Arabidopsis primary root and root-meristem initials. Development 120:2475–2487Google Scholar
  142. Schiefelbein J, Kwak SH, Wieckowski Y, Barron C, Bruex A (2009) The gene regulatory network for root epidermal cell-type pattern formation in Arabidopsis. J Exp Bot 60:1515–1521PubMedCrossRefGoogle Scholar
  143. Sessions A, Yanofsky MF, Weigel D (2000) Cell–cell signaling and movement by the floral transcription factors LEAFY and APETALA1. Science 289:779–781PubMedCrossRefGoogle Scholar
  144. Shaw RM, Fay AJ, Puthenveedu MA, von Zastrow M, Jan YN, Jan LY (2007) Microtubule plus-end-tracking proteins target gap junctions directly from the cell interior to adherens junctions. Cell 128:547–560PubMedCrossRefGoogle Scholar
  145. Sherer NM, Lehmann MJ, Jimenez-Soto LF, Horensavitz C, Pypaert M, Mothes W (2007) Retroviruses can establish filopodial bridges for efficient cell-to-cell transmission. Nat Cell Biol 9:310–315PubMedCrossRefGoogle Scholar
  146. Shestopalov VI, Panchin Y (2008) Pannexins and gap junction protein diversity. Cell Mol Life Sci 65:376–394PubMedCrossRefGoogle Scholar
  147. Söhl G, Willecke K (2003) An update on connexin genes and their nomenclature in mouse and man. Cell Commun Adhes 10:173–180PubMedGoogle Scholar
  148. Solan JL, Lampe PD (2009) Connexin43 phosphorylation: structural changes and biological effects. Biochem J 419:261–272PubMedCrossRefGoogle Scholar
  149. Soundararajan S, Jedd G, Li XL, Ramos-Pamplona M, Chua NH, Naqvi NI (2004) Woronin body function in Magnaporthe grisea is essential for efficient pathogenesis and for survival during nitrogen starvation stress. Plant Cell 16:1564–1574PubMedCrossRefGoogle Scholar
  150. Sowinski S, Jolly C, Berninghausen O, Purbhoo MA, Chauveau A, Köhler K, Oddos S, Eissmann P, Brodsky FM, Hopkins C, Önfelt B, Sattentau Q, Davis DM (2008) Membrane nanotubes physically connect T cells over long distances presenting a novel route for HIV-1 transmission. Nat Cell Biol 10:211–219PubMedCrossRefGoogle Scholar
  151. Squecco R, Sassoli C, Nuti F, Martinesi M, Chellini F, Nosi D, Zecchi-Orlandini S, Francini F, Formigli L, Meacci E (2006) Sphingosine 1-phosphate induces myoblast differentiation through Cx43 protein expression: a role for a gap junction-dependent and -independent function. Mol Biol Cell 17:4896–4910PubMedCrossRefGoogle Scholar
  152. Stadler R, Lauterbach C, Sauer N (2005) Cell-to-cell movement of green fluorescent protein reveals post-phloem transport in the outer integument and identifies symplastic domains in Arabidopsis seeds and embryos. Plant Physiol 139:701–712PubMedCrossRefGoogle Scholar
  153. Starich TA, Lee RY, Panzarella C, Avery L, Shaw JE (1996) eat-5 and unc-7 represent a multigene family in Caenorhabditis elegans involved in cell–cell coupling. J Cell Biol 134:537–548PubMedCrossRefGoogle Scholar
  154. Steinberg G, Kollmann R (1994) A quantitative analysis of the interspecific plasmodesmata in the non-division walls of the plant chimera Laburnocytisus adamii (Poit.) Schneid. Planta 192:75–83Google Scholar
  155. Swann EC, Frieders EM, McLaughlin DJ (2001) Uredinomycetes. In: Mc Laughlin DJ, McLaghlin EG, Lemke PA (eds) The mycota VII, systematics and evolution, part B. Springer, BerlinGoogle Scholar
  156. Taylor JW, Fuller MS (1980) Microtubules, organelle movement, and cross-wall formation at the sporangial–rhizoidal interface in the fungus, Chytridium confervae. Protoplasma 104:201–221CrossRefGoogle Scholar
  157. Tenney K, Hunt I, Sweigard J, Pounder JI, McClain C, Bowman EJ, Bowman BJ (2000) Hex-1, a gene unique to filamentous fungi, encodes the major protein of the Woronin body and functions as a plug for septal pores. Fungal Genet Biol 31:205–217PubMedCrossRefGoogle Scholar
  158. Tilney LG, Cooke TJ, Connelly PS, Tilney MS (1991) The structure of plasmodesmata as revealed by plasmolysis, detergent extraction, and protease digestion. J Cell Biol 112:739–747PubMedCrossRefGoogle Scholar
  159. Urbanus SL, Martinelli AP, Dinh QD, Aizza LCB, Dornelas MC, Angenent GC, Immink RGH (2010) Intercellular transport of epidermis-expressed MADS domain transcription factors and their effect on plant morphology and floral transition. Plant J 63:60–72PubMedGoogle Scholar
  160. Ursitti JA, Petrich BG, Lee PC, Resneck WG, Ye X, Yang J, Randall WR, Bloch RJ, Wang YB (2007) Role of an alternatively spliced form of alpha II-spectrin in localization of connexin 43 in cardiornyocytes and regulation by stress-activated protein kinase. J Mol Cell Cardiol 42:572–581PubMedCrossRefGoogle Scholar
  161. Valiunas V, Polosina YY, Miller H, Potapova IA, Valiuniene L, Doronin S, Mathias RT, Robinson RB, Rosen MR, Cohen IS, Brink PR (2005) Connexin-specific cell-to-cell transfer of short interfering RNA by gap junctions. J Physiol 568:459–468PubMedCrossRefGoogle Scholar
  162. van Bel AJE (2003) The phloem, a miracle of ingenuity. Plant Cell Environ 26:125–149CrossRefGoogle Scholar
  163. van Bel AJE, Kempers R (1996) The pore/plasmodesm unit, key element in the interplay between sieve element and companion cell. Prog Bot 58:278–291Google Scholar
  164. van Bel AJE, Ehlers K, Knoblauch M (2002) Sieve elements caught in the act. Trends Plant Sci 7:126–132PubMedCrossRefGoogle Scholar
  165. van der Valk P, Marchant R (1978) Hyphal ultrastructure in fruit-body primordia of basidiomycetes Schizophyllum commune and Coprinus cinereus. Protoplasma 95:57–72CrossRefGoogle Scholar
  166. van Driel KGA, van Peer AF, Grijpstra J, Wösten HAB, Verkleij AJ, Müller WH, Boekhout T (2008) Septal pore cap protein SPC18, isolated from the basidiomycetous fungus Rhizoctonia solani, also resides in pore plugs. Eukaryot Cell 7:1865–1873PubMedCrossRefGoogle Scholar
  167. van Driel KG, Humbel BM, Verkleij AJ, Stalpers J, Müller WH, Boekhout T (2009) Septal pore complex morphology in the Agaricomycotina (Basidiomycota) with emphasis on the Cantharellales and Hymenochaetales. Mycol Res 113:559–576PubMedCrossRefGoogle Scholar
  168. van Peer AF, Wang FF, van Driel KGA, de Jong JF, van Donselaar EG, Müller WH, Boekhout T, Lugones LG, Wösten HAB (2010) The septal pore cap is an organelle that functions in vegetative growth and mushroom formation of the wood-rot fungus Schizophyllum commune. Environ Microbiol 12:833–844PubMedCrossRefGoogle Scholar
  169. Wada T, Kurata T, Tominaga R, Koshino-Kimura Y, Tachibana T, Goto K, Marks MD, Shimura Y, Okada K (2002) Role of a positive regulator of root hair development, CAPRICE, in Arabidopsis root epidermal cell differentiation. Development 129:5409–5419PubMedCrossRefGoogle Scholar
  170. Wahrlich W (1893) Zur Anatomie der Zelle bei Pilzen und Fadenalgen. Botanica Horti Universitatis Imperialis Petropolitanae IV:101–155Google Scholar
  171. Wang X, Veruki ML, Bukoreshtliev NV, Hartveit E, Gerdes HH (2010) Animal cells connected by nanotubes can be electrically coupled through interposed gap-junction channels. Proc Natl Acad Sci USA 107:17194–17199PubMedCrossRefGoogle Scholar
  172. Warner AE, Guthrie SC, Gilula NB (1984) Antibodies to gap-junctional protein selectively disrupt junctional communication in the early amphibian embryo. Nature 311:127–131PubMedCrossRefGoogle Scholar
  173. Wei CJ, Xu X, Lo CW (2004) Connexins and cell signaling in development and disease. Annu Rev Cell Dev Biol 20:811–838PubMedCrossRefGoogle Scholar
  174. Wigge PA, Kim MC, Jaeger KE, Busch W, Schmid M, Lohmann JU, Weigel D (2005) Integration of spatial and temporal information during floral induction in Arabidopsis. Science 309:1056–1059PubMedCrossRefGoogle Scholar
  175. Willecke K, Eiberger J, Degen J, Eckardt D, Romualdi A, Guldenagel M, Deutsch U, Söhl G (2002) Structural and functional diversity of connexin genes in the mouse and human genome. Biol Chem 383:725–737PubMedCrossRefGoogle Scholar
  176. Wilsenach R, Kessel M (1965) Micropores in the cross-wall of Geotrichum candidum. Nature 207:545–546CrossRefGoogle Scholar
  177. Wu XL, Weigel D, Wigge PA (2002) Signaling in plants by intercellular RNA and protein movement. Genes Dev 16:151–158PubMedCrossRefGoogle Scholar
  178. Xu XM, Wang J, Xuan Z, Goldshmidt A, Borrill PG, Hariharan N, Kim JY, Jackson D (2011) Chaperonins facilitate KNOTTED1 cell-to-cell trafficking and stem cell function. Science 333:1141–1144PubMedCrossRefGoogle Scholar
  179. Ye ZC, Wyeth MS, Baltan-Tekkok S, Ransom BR (2003) Functional hemichannels in astrocytes: a novel mechanism of glutamate release. J Neurosci 23:3588–3596PubMedGoogle Scholar
  180. Yen MR, Saier MH Jr (2007) Gap junctional proteins of animals: the innexin/pannexin superfamily. Prog Biophys Mol Biol 94:5–14PubMedCrossRefGoogle Scholar
  181. Yuan P, Jedd G, Kumaran D, Swaminathan S, Shio H, Hewitt D, Chua NH, Swaminathan K (2003) A HEX-1 crystal lattice required for Woronin body function in Neurospora crassa. Nat Struct Biol 10:264–270PubMedCrossRefGoogle Scholar
  182. Zani BG, Edelman ER (2010) Cellular bridges: routes for intercellular communication and cell migration. Commun Integr Biol 3:215–220PubMedCrossRefGoogle Scholar
  183. Zani BG, Indolfi L, Edelman ER (2010) Tubular bridges for bronchial epithelial cell migration and communication. PLoS One 5:e8930PubMedCrossRefGoogle Scholar
  184. Zeevaart JAD (1976) Physiology of flower formation. Annu Rev Plant Phys 27:321–348CrossRefGoogle Scholar
  185. Zhu D, Tan KS, Zhang X, Sun AY, Sun GY, Lee JC (2005) Hydrogen peroxide alters membrane and cytoskeleton properties and increases intercellular connections in astrocytes. J Cell Sci 118:3695–3703PubMedCrossRefGoogle Scholar
  186. Zickler D (2009) Observing meiosis in filamentous fungi: Sordaria and Neurospora. Methods Mol Biol 558:91–114PubMedCrossRefGoogle Scholar
  187. Zoidl G, Dermietzel R (2010) Gap junctions in inherited human disease. Pflug Arch Eur J Phy 460:451–466CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Lehrstuhl für Allgemeine und Molekulare BotanikRuhr-Universität Bochum, ND7/131BochumGermany

Personalised recommendations