Skip to main content
Log in

Subsocial behaviour and brood adoption in mixed-species colonies of two theridiid spiders

  • Original Paper
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

Cooperation and group living often evolves through kin selection. However, associations between unrelated organisms, such as different species, can evolve if both parties benefit from the interaction. Group living is rare in spiders, but occurs in cooperative, permanently social spiders, as well as in territorial, colonial spiders. Mixed species spider colonies, involving closely related species, have rarely been documented. We examined social interactions in newly discovered mixed-species colonies of theridiid spiders on Bali, Indonesia. Our aim was to test the degree of intra- and interspecific tolerance, aggression and cooperation through behavioural experiments and examine the potential for adoption of foreign brood. Morphological and genetic analyses confirmed that colonies consisted of two related species Chikunia nigra (O.P. Cambridge, 1880) new combination (previously Chrysso nigra) and a yet undescribed Chikunia sp. Females defended territories and did not engage in cooperative prey capture, but interestingly, both species seemed to provide extended maternal care of young and indiscriminate care for foreign brood. Future studies may reveal whether these species adopt only intra-specific young, or also inter-specifically. We classify both Chikunia species subsocial and intra- and interspecifically colonial, and discuss the evolutionary significance of a system where one or both species may potentially benefit from mutual tolerance and brood adoption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agnarsson I (2004) Morphological phylogeny of cobweb spiders and their relatives (Araneae, Araneoidea, Theridiidae). Zool J Linnean Soc 141(4):447–626

    Article  Google Scholar 

  • Agnarsson I (2006) A revision of the New World eximius lineage of Anelosimus (Araneae, Theridiidae) and a phylogenetic analysis using worldwide exemplars. Zool J Linnean Soc 146(4):453–593

    Article  Google Scholar 

  • Agnarsson I (2010) The utility of ITS2 in spider phylogenetics: notes on prior work and an example from Anelosimus. J Arachnol 38(2):377–382

    Article  Google Scholar 

  • Agnarsson I (2012) A new phylogeny of Anelosimus and the placement and behavior of Anelosimus vierae n. sp from Uruguay (Araneae: Theridiidae). J Arachnol 40(1):78–84

    Article  Google Scholar 

  • Agnarsson I, Aviles L, Coddington JA, Maddison WP (2006) Sociality in theridiid spiders: repeated origins of an evolutionary dead end. Evolution 60(11):2342–2351

    PubMed  Google Scholar 

  • Agnarsson I, Maddison WP, Aviles L (2007) The phylogeny of the social Anelosimus spiders (Araneae: Theridiidae) inferred from six molecular loci and morphology. Mol Phylogenet Evol 43(3):833–851

    Article  PubMed  CAS  Google Scholar 

  • Arnedo MA, Hormiga G, Scharff N (2009) Higher-level phylogenetics of linyphiid spiders (Araneae, Linyphiidae) based on morphological and molecular evidence. Cladistics 25(3):231–262

    Article  Google Scholar 

  • Avilés L (1997) Causes and consequences of cooperation and permanent-sociality in spiders. In: Choe JC, Crespi BJ (eds) The evolution of social behavior in insects and arachnids. Cambridge University Press, Cambridge, pp 476–498

    Google Scholar 

  • Aviles L, Maddison W (1991) When is the sex-ratio biased in social spiders?: chromosome studies of embryos and male meiosis in Anelosimus species (Araneae, Theridiidae). J Arachnol 19(2):126–135

    Google Scholar 

  • Bates D, Maechler M, Bolker B (2011) lme4: Linear mixed-effects models using S4 classes, http://CRAN.R-project.org/package=lme4

  • Beavis AS, Rowell DM, Evans T (2007) Cannibalism and kin recognition in Delena cancerides (Araneae: Sparassidae), a social huntsman spider. J Zool 271(2):233–237

    Article  Google Scholar 

  • Bilde T, Lubin Y (2011) Group living in spiders: cooperative breeding and coloniality. In: Herberstein ME (ed) Spider behaviour, flexibility and versatility. Cambridge University Press, New York

    Google Scholar 

  • Bilde T, Lubin Y, Smith D, Schneider JM, Maklakov AA (2005) The transition to social inbred mating systems in spiders: role of inbreeding tolerance in a subsocial predecessor. Evolution 59(1):160–174

    PubMed  Google Scholar 

  • Boomsma JJ (2009) Lifetime monogamy and the evolution of eusociality. Philos Trans R Soc B Biol Sci 364(1533):3191–3207

    Article  Google Scholar 

  • Boucher DH, James S, Keeler KH (1982) The Ecology of Mutualism. Annu Rev Ecol Syst 13:315–347

    Article  Google Scholar 

  • Buschinger A (1986) Evolution of Social Parasitism in Ants. Trends Ecol Evol 1(6):155–160

    Article  PubMed  CAS  Google Scholar 

  • Deeleman-Reinhold CL (2009) Spiny theridiids in the Asian tropics. Systematics, notes on behaviour and species richness (Araneae: Theridiidae: Chrysso, Meotipa). Contrib Nat Hist 12:403–436

    Google Scholar 

  • R Development Core Team (2011) R: A language and environment for statistical computing, http://www.R-project.org/R Foundation for Statistical Computing. Vienna, Austria

  • Doebeli M, Knowlton N (1998) The evolution of interspecific mutualisms. Proc Natl Acad Sci U S A 95(15):8676–8680

    Article  PubMed  CAS  Google Scholar 

  • Eberhard WG, Agnarsson I, Levi HW (2008) Web forms and the phylogeny and theridiid spiders (Araneae: Theridiidae): chaos from order. Syst Biodivers 6(4):415–475

    Article  Google Scholar 

  • Elgar MA (1994) Experimental evidence of a mutualistic association between 2 web-building spiders. J Anim Ecol 63(4):880–886

    Article  Google Scholar 

  • Foelix RF (1996) Biology of spiders. Oxford University Press, Oxford

    Google Scholar 

  • Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3(5):294–299

    PubMed  CAS  Google Scholar 

  • Furey FE (1998) Two cooperatively social populations of the theridiid spider Anelosimus studiosus in a temperate region. Anim Behav 55:727–735

    Article  PubMed  Google Scholar 

  • Green P (1999) PHRAP, http://phrap.org/

  • Green P, Ewing B (2002). PHRED, http://phrap.org/

  • Grostal P, Walter DE (1997) Kleptoparasites or commensals? Effects of Argyrodes antipodianus (Araneae: Theridiidae) on Nephila plumipes (Araneae: Tetragnathidae). Oecologia 111(4):570–574

    Article  Google Scholar 

  • Hamilton WD (1964) Genetical evolution of social behaviour I. J Theor Biol 7(1):1–16

    Article  PubMed  CAS  Google Scholar 

  • Hebert PDN, Ratnasingham S, deWaard JR (2003) Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc R Soc London, Ser B 270:S96–S99

    Article  CAS  Google Scholar 

  • Hedin MC, Maddison WP (2001) A combined molecular approach to phylogeny of the lumping spider subfamily Dendryphantinae (Araneae: Salticidae). Mol Phylogenet Evol 18(3):386–403

    Article  PubMed  CAS  Google Scholar 

  • Hodge MA, Uetz GW (1996) Foraging advantages of mixed-species association between solitary and colonial orb-weaving spiders. Oecologia 107(4):578–587

    Article  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17(8):754–755

    Article  PubMed  CAS  Google Scholar 

  • Jackson RR (1986) Communal jumping spiders (Araneae, Salticidae) from Kenya—interspecific nest complexes, cohabitation with web-building spiders, and intraspecific interactions. N Z J Zool 13(1):13–26

    Article  Google Scholar 

  • Jackson RR, Nelson XJ, Salm K (2008) The natural history of Myrmarachne melanotarsa, a social ant-mimicking jumping spider. N Z J Zool 35(3):225–235

    Article  Google Scholar 

  • Johannesen J, Lubin Y, Smith DR, Bilde T, Schneider JM (2007) The age and evolution of sociality in Stegodyphus spiders: a molecular phylogenetic perspective. Proc R Soc Lond B Biol 274(1607):231–237

    Article  CAS  Google Scholar 

  • Jones TC, Riechert SE, Dalrymple SE, Parker PG (2007) Fostering model explains variation in levels of sociality in a spider system. Anim Behav 73:195–204

    Article  Google Scholar 

  • Kullmann EJ (1972) Evolution of social behavior in spiders (Araneae - Eresidae and Theridiidae). Am Zool 12(3):419–426

    Google Scholar 

  • Lubin Y, Bilde T (2007) The evolution of sociality in spiders. Adv Study Behav 37:83–145

    Article  Google Scholar 

  • Maddison D, Maddison W (2011a) Chromaseq: a Mesquite module for analyzing sequence chromatograms. Version 0.99, http://mesquiteproject.org/packages/chromaseq

  • Maddison W, Maddison D (2011b) Mesquite: a modular system for evolutionary analysis. Version 2.75, http://mesquiteproject.org

  • Menzel F, Bluthgen N (2010) Parabiotic associations between tropical ants: equal partnership or parasitic exploitation? J Anim Ecol 79(1):71–81

    Article  PubMed  CAS  Google Scholar 

  • Peres CA (1992) Prey-capture benefits in a mixed-species group of Amazonian tamarins, Saguinus fuscicollis and Saguinus mystax. Behav Ecol Sociobiol 31(5):339–347

    Article  Google Scholar 

  • Peres CA (1993) Anti-predation benefits in a mixed-species group of Amazonian tamarins. Folia Primatol 61(2):61–76

    Article  PubMed  CAS  Google Scholar 

  • PlateauxQuenu C, Horel A, Roland C (1997) A reflection on social evolution in two different groups of arthropods: halictine bees (Hymenoptera) and spiders (Arachnida). Ethol Ecol Evol 9(2):183–196

    Article  Google Scholar 

  • Platnick NI (2012) The World Spider Catalog, Version 12.5, http://research.amnh.org/iz/spiders/catalog American Museum of Natural History

  • Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25(7):1253–1256

    Article  PubMed  CAS  Google Scholar 

  • Posada D, Buckley TR (2004) Model selection and model averaging in phylogenetics: advantages of akaike information criterion and Bayesian approaches over likelihood ratio tests. Syst Biol 53(5):793–808

    Article  PubMed  Google Scholar 

  • Rothstein SI, Robinson SK (1998) Parasitic birds and their hosts: studies in coevolution. Oxford University Press, New York

    Google Scholar 

  • Schneider JM (2002) Reproductive state and care giving in Stegodyphus (Araneae: Eresidae) and the implications for the evolution of sociality. Anim Behav 63:649–658

    Article  Google Scholar 

  • Schneider JM, Bilde T (2008) Benefits of cooperation with genetic kin in a subsocial spider. Proc Natl Acad Sci U S A 105(31):10843–10846

    Article  PubMed  CAS  Google Scholar 

  • Sebastian PA, Peter KV (2009) Spiders of India. Universities Press (India), Hyderabad

    Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22(22):4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Uetz GW (1989) The Ricochet effect and prey capture in colonial spiders. Oecologia 81(2):154–159

    Google Scholar 

  • Uetz GW, Hieber CS (1997) Colonial web-building spiders: balancing costs and benefits of group-living. In: Choe JC, Crespi BJ (eds) The evolution of social behavior in insects and arachnids. Cambridge University Press, Cambridge, pp 458–475

    Google Scholar 

  • White TJ, Bruns TD, Lee SB, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gefland DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, Inc., San Diego, pp 315–322

    Google Scholar 

  • Whiting MF, Carpenter JC, Wheeler QD, Wheeler WC (1997) The strepsiptera problem: phylogeny of the holometabolous insect orders inferred from 18S and 28S ribosomal DNA sequences and morphology. Syst Biol 46(1):1–68

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Maurice Leponce for sharing his discovery of the spider colonies with us, and Léon Baert for preliminary species identification. Thanks to Yael Lubin and all members of the Spider Lab at Aarhus University for the useful comments to a previous version of this manuscript. This study was supported by the Danish Research Council FNU 495997 and by the National Science Foundation DEB-1050187-1050253.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lena Grinsted.

Additional information

Communicated by: Sven Thatje

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grinsted, L., Agnarsson, I. & Bilde, T. Subsocial behaviour and brood adoption in mixed-species colonies of two theridiid spiders. Naturwissenschaften 99, 1021–1030 (2012). https://doi.org/10.1007/s00114-012-0983-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-012-0983-4

Keywords

Navigation