Advertisement

Naturwissenschaften

, Volume 99, Issue 9, pp 715–729 | Cite as

An ‘ameridelphian’ marsupial from the early Eocene of Australia supports a complex model of Southern Hemisphere marsupial biogeography

  • Robin M. D. BeckEmail author
Original Paper

Abstract

Recent molecular data strongly support the monophyly of all extant Australian and New Guinean marsupials (Eomarsupialia) to the exclusion of extant South American marsupials. This, together with available geological and fossil evidence, has been used to argue that the presence of marsupials in Australia is simply the result of a single dispersal event from South America during the latest Cretaceous or Palaeocene, without subsequent dispersals between the two continents. Here, I describe an isolated ankle bone (calcaneus) of a metatherian from the early Eocene Tingamarra Local Fauna in northeastern Australia. Strikingly, this specimen, QM F30060, lacks the ‘continuous lower ankle joint pattern’ (CLAJP), presence of which is a highly distinctive apomorphy of the marsupial clade Australidelphia, which includes Eomarsupialia, the living South American microbiotherian Dromiciops and the Tingamarran fossil marsupial Djarthia. Comparisons with a range of marsupials and stem-metatherians strongly suggest that the absence of the CLAJP in QM F30060 is plesiomorphic, and that this specimen represents the first unequivocal non-australidelphian (‘ameridelphian’) metatherian known from Australia. This interpretation is confirmed by phylogenetic analyses that place QM F30060 within (crown-group) Marsupialia, but outside Australidelphia. Based on these results, the distribution of marsupials within Gondwana cannot be explained by simply a single dispersal event from South America and Australia. Either there were multiple dispersals by marsupials (and possibly also stem-metatherians) between South America and Australia, in one or both directions, or, alternatively, there was a broadly similar metatherian fauna stretching across southern South America, Antarctica and Australia during the Late Cretaceous–early Palaeogene.

Keywords

Marsupialia Australidelphia Ameridelphia Gondwana Australia Eocene 

Abbreviations

AMNH M-

American Museum of Natural History Mammalogy collection

AR

University of New South Wales Archer collection

CaCu

calcaneocuboid

CaCua

auxiliary calcaneocuboid

CaCud

distal calcaneocuboid

CaCul

lateral calcaneocuboid

CaCum

medial calcaneocuboid

CaCup

proximal calcaneocuboid

CLAJP

continuous lower ankle joint pattern

Ec

ectal

FMNH

Field Museum of Natural History

LAJ

lower ankle joint

Ma

Megannum

mm

millimetres

MYA

million years ago

QM F

Queensland Museum Palaeontology collection

SLAJP

separate lower ankle joint pattern

Su

sustentacular

UNSW

University of New South Wales

Notes

Acknowledgements

Collection and study of the Tingamarra Local Fauna has been led by Henk Godthelp, Mike Archer and Suzanne Hand at UNSW, who kindly allowed study of the fossil specimen described here. Financial support for R. Beck’s research on the Tingamarra Local Fauna has been provided by the Leverhulme Trust (via Study Abroad Studentship SAS/30110), Phil Creaser and the CREATE fund at the University of New South Wales (via a CREATE scholarship), the National Science Foundation (via grant DEB-0743039, in collaboration with Rob Voss at the AMNH) and the Australian Research Council (via Discovery Early Career Researcher Award DE120100957). Other critical support for research on the Tingamarra Local Fauna has been given by the Australian Research Council (ARC DP0453262 to M. Archer, and ARC LP045366 and LP0989969 to S. Hand) and the University of New South Wales. Christine Argot gave insightful comments on QM F30060, and Lawrence Lawver and Francisco Goin kindly supplied a number of important references. Rob Voss provided some key observations on Mimoperadectes houdei. Mike Archer, Henk Godthelp and Sue Hand provided useful comments and feedback that helped greatly improve this research. I thank the associate editor Rob Asher and three anonymous reviewers for their constructive reviews.

Supplementary material

114_2012_953_MOESM1_ESM.pdf (273 kb)
ESM 1 (PDF 273 kb)

References

  1. Abello MA, Candela AM (2010) Postcranial skeleton of the Miocene marsupial Palaeothentes (Paucituberculata, Palaeothentidae): paleobiology and phylogeny. J Vertebr Paleontol 30:1515–1527CrossRefGoogle Scholar
  2. Amrine-Madsen H, Scally M, Westerman M, Stanhope MJ, Krajewski C, Springer MS (2003) Nuclear gene sequences provide evidence for the monophyly of australidelphian marsupials. Mol Phylogenet Evol 28:186–196. doi: 10.1016/s1055-7903(03)00122-2 PubMedCrossRefGoogle Scholar
  3. Aragón E, Goin FJ, Aguilera YE, Woodburne MO, Carlini AA, Roggiero MF (2011) Palaeogeography and palaeoenvironments of northern Patagonia from the Late Cretaceous to the Miocene: the Palaeogene Andean gap and the rise of the North Patagonian High Plateau. Biol J Linn Soc 103:305–315CrossRefGoogle Scholar
  4. Archer M (1984) The Australian marsupial radiation. In: Archer M, Clayton G (eds) Vertebrate zoogeography and evolution in Australasia. Hesperian Press, Perth, pp 633–808Google Scholar
  5. Archer M, Godthelp H, Hand SJ (1993) Early Eocene marsupial from Australia. Kaupia 3:193–200Google Scholar
  6. Archer M, Arena R, Bassarova M, Black K, Brammall J, Cooke B, Creaser P, Crosby K, Gillespie A, Godthelp H, Gott M, Hand SJ, Kear B, Krikmann A, Mackness BS, Muirhead J, Musser A, Myers TJ, Pledge N, Wang Y, Wroe S (1999) The evolutionary history and diversity of Australian mammals. Aust Mamm 21:1–45Google Scholar
  7. Argot C (2002) Functional-adaptive analysis of the hindlimb anatomy of extant marsupials and the paleobiology of the Paleocene marsupials Mayulestes ferox and Pucadelphys andinus. J Morphol 253:76–108. doi: 10.1002/jmor.1114 PubMedCrossRefGoogle Scholar
  8. Asher RJ, Horovitz I, Sánchez-Villagra MR (2004) First combined cladistic analysis of marsupial mammal interrelationships. Mol Phylogenet Evol 33:240–250. doi: 10.1016/j.ympev.2004.05.004 PubMedCrossRefGoogle Scholar
  9. Baker ML, Wares JP, Harrison GA, Miller RD (2004) Relationships among the families and orders of marsupials and the major mammalian lineages based on Recombination Activating Gene-1. J Mamm Evol 11:1–16CrossRefGoogle Scholar
  10. Beck RMD (2008) A dated phylogeny of marsupials using a molecular supermatrix and multiple fossil constraints. J Mammal 89:175–189CrossRefGoogle Scholar
  11. Beck RMD, Godthelp H, Weisbecker V, Archer M, Hand SJ (2008) Australia’s oldest marsupial fossils and their biogeographical implications. PLoS One 3:e1858. doi: 10.1371/journal.pone.0001858 PubMedCrossRefGoogle Scholar
  12. Bensley BA (1903) On the evolution of the Australian Marsupialia, with remarks on the relationships of the marsupials in general. Trans Linn Soc Lond (Zool) 9:83–217CrossRefGoogle Scholar
  13. Bergqvist LP, Abrantes EAL, Avilla L (2004) The Xenarthra (Mammalia) of São José de Itaboraí Basin (upper Paleocene, Itaboraian), Rio de Janeiro, Brazil. Geodiversitas 26:323–337Google Scholar
  14. Bond M, Reguero M, Vizcaíno S, Marenssi S (2006) A new ‘South American ungulate’ (Mammalia: Litopterna) from the Eocene of the Antarctic Peninsula. In: Francis JE, Pirrie D, Crame JA (eds) Cretaceous-Tertiary high-latitude palaeoenvironments, James Ross Basin, Antarctica. Geological Society Special Publications, vol 258. Geological Society, London, pp 163–176Google Scholar
  15. Bond M, Kramarz A, MacPhee RD, Reguero M (2011) A new astrapothere (Mammalia, Meridiungulata) from La Meseta Formation, Seymour (Marambio) Island, and a reassessment of previous records of Antarctic astrapotheres. Am Mus Novit 3718:1–16CrossRefGoogle Scholar
  16. Case JA, Goin FJ, Woodburne MO (2005) “South American” marsupials from the Late Cretaceous of North America and the origin of marsupial cohorts. J Mamm Evol 12:461–494CrossRefGoogle Scholar
  17. Chornogubsky L, Goin FJ, Reguero M (2009) A reassessment of Antarctic polydolopid marsupials (Middle Eocene, La Meseta Formation). Antarct Sci 21:285. doi: 10.1017/s0954102009001916 CrossRefGoogle Scholar
  18. Clemens WA, Richardson BJ, Baverstock PR (1989) Biogeography and phylogeny of the Metatheria. In: Walton DW, Dyne GR (eds) Fauna of Australia, vol 1B, Mammalia. Australian Government Publishing Service, Canberra, pp 527–548Google Scholar
  19. Cobbett A, Wilkinson M, Wills MA (2007) Fossils impact as hard as living taxa in parsimony analyses of morphology. Syst Biol 56:753–766PubMedCrossRefGoogle Scholar
  20. Crisp MD, Trewick SA, Cook LG (2011) Hypothesis testing in biogeography. Trends Ecol Evol 26:66–72. doi: 10.1016/j.tree.2010.11.005 PubMedCrossRefGoogle Scholar
  21. de Muizon C (1998) Mayulestes ferox, a borhyaenoid (Metatheria, Mammalia) from the early Palaeocene of Bolivia: phylogenetic and palaeobiologic implications. Geodiversitas 20:19–142Google Scholar
  22. de Muizon C, Argot C (2003) Comparative anatomy of the Tiupampa didelphimorphs: an approach to locomotory habits of early marsupials. In: Jones M, Dickman C, Archer M (eds) Predators with pouches: the biology of carnivorous marsupials. CSIRO Publishing, Collingwood, pp 43–62Google Scholar
  23. Drummond AJ, Ho SYW, Phillips MJ, Rambaut A (2006) Relaxed phylogenetics and dating with confidence. PLoS Biol 4:e88PubMedCrossRefGoogle Scholar
  24. Flores DA (2009) Phylogenetic analyses of postcranial skeletal morphology in didelphid marsupials. Bull Am Mus Nat Hist 320:1–81CrossRefGoogle Scholar
  25. Flores DA, Díaz MM (2009) Postcranial skeleton of Glironia venusta (Didelphimorphia, Didelphidae, Caluromyinae): description and functional morphology. Zoosyst Evol 85:311–339CrossRefGoogle Scholar
  26. Godthelp H, Archer M, Cifelli RL, Hand SJ, Gilkeson CF (1992) Earliest known Australian Tertiary mammal fauna. Nature 356:514–516CrossRefGoogle Scholar
  27. Godthelp H, Wroe S, Archer M (1999) A new marsupial from the Early Eocene Tingamarra Local Fauna of Murgon, southeastern Queensland: a prototypical Australian marsupial? J Mamm Evol 6:289–313CrossRefGoogle Scholar
  28. Goin FJ, Case JA, Woodburne MO, Vizcaino SF, Reguero MA (1999) New discoveries of “opposum-like” marsupials from Antarctica (Seymour Island, Medial Eocene). J Mamm Evol 6:335–365CrossRefGoogle Scholar
  29. Goin FJ, Reguero MA, Santillana SN, Marenssi SA, Moly JJ (2005) A new microbiotheriid marsupial from Antarctica. 5º Simposio Argentino y 1º Latinoamericano sobre Investigaciones Antárticas, Buenos AiresGoogle Scholar
  30. Goin FJ, Zimicz N, Reguero MA, Santillana SN, Marenssi SA, Moly JJ (2007) New marsupial (Mammalia) from the Eocene of Antarctica, and the origins and affinities of the Microbiotheria. Rev Asoc Geol Argent 62:597–603Google Scholar
  31. Goin FJ, Zimicz AN, Forasiepi AM, Chornogubsky LC, Abello MA (in press) The rise and fall of South American metatherians: contexts, adaptations, radiations, and extinctions. In: Rosenberger AL, Tejedor MF (eds) Origins and evolution of Cenozoic South American mammals. Springer, New YorkGoogle Scholar
  32. Hershkovitz P (1999) Dromiciops gliroides Thomas, 1894, last of the Microbiotheria (Marsupialia), with a review of the family Microbiotheriidae. Fieldiana Zool 93:1–60Google Scholar
  33. Hooker JJ (2001) Tarsals of the extinct insectivoran family Nyctitheriidae (Mammalia): evidence for archontan relationships. Zool J Linn Soc 132:501–529CrossRefGoogle Scholar
  34. Horovitz I (1999) A phylogenetic study of living and fossil platyrrhines. Am Mus Novit 3269:1–40Google Scholar
  35. Horovitz I, Sánchez-Villagra MR (2003) A morphological analysis of marsupial mammal higher-level phylogenetic relationships. Cladistics 19:181–212CrossRefGoogle Scholar
  36. Horovitz I, Ladevèze S, Argot C, Macrini TE, Martin T, Hooker JJ, Kurz C, de Muizon C, Sánchez-Villagra MR (2008) The anatomy of Herpetotherium cf. fugax Cope, 1873, a metatherian from the Oligocene of North America. Palaeontogr Abt A 284:109–141Google Scholar
  37. Horovitz I, Martin T, Bloch J, Ladevèze S, Kurz C, Sánchez-Villagra MR (2009) Cranial anatomy of the earliest marsupials and the origin of opossums. PLoS One 4:e8278PubMedCrossRefGoogle Scholar
  38. Kearney M (2002) Fragmentary taxa, missing data, and ambiguity: mistaken assumptions and conclusions. Syst Biol 51:369–381. doi: 10.1080/10635150252899824 PubMedCrossRefGoogle Scholar
  39. Kemp TS (2005) The origin and evolution of mammals. Oxford University Press, OxfordGoogle Scholar
  40. Kirsch JAW (1984) Marsupial origins: taxonomic and biological considerations. In: Archer M, Clayton G (eds) Vertebrate Zoogeography and Evolution in Australasia. Hesperian Press, Carlisle, pp 627–631Google Scholar
  41. Kirsch JAW, Dickerman AW, Reig OA, Springer MS (1991) DNA hybridization evidence for the Australasian affinity of the American marsupial Dromiciops australis. Proc Natl Acad Sci U S A 88:10465–10469PubMedCrossRefGoogle Scholar
  42. Kirsch JAW, Lapointe FJ, Springer MS (1997) DNA-hybridization studies of marsupials and their implications for metatherian classification. Aust J Zool 45:211–280CrossRefGoogle Scholar
  43. Ladevèze S (2004) Metatherian petrosals from the Late Paleocene of Itaboraí (Brazil), and their phylogenetic implications. J Vertebr Paleontol 24:202–213CrossRefGoogle Scholar
  44. Ladevèze S (2007) Petrosal bones of metatherian mammals from the Late Palaeocene of Itaboraí (Brazil), and a cladistic analysis of petrosal features in metatherians. Zool J Linn Soc 150:85–115CrossRefGoogle Scholar
  45. Ladevèze S, de Muizon C (2007) The auditory region of early Paleocene Pucadelphydae (Mammalia, Metatheria) from Tiupampa, Bolivia, with phylogenetic implications. Palaeontology 50:1123–1154CrossRefGoogle Scholar
  46. Ladevèze S, de Muizon C (2010) Evidence of early evolution of Australidelphia (Metatheria, Mammalia) in South America: phylogenetic relationships of the metatherians from the Late Palaeocene of Itaborai (Brazil) based on teeth and petrosal bones. Zool J Linn Soc 159:746–784. doi: 10.1111/j.1096-3642.2009.00577.x CrossRefGoogle Scholar
  47. Lawver LA, Gahagan LM, Dalziel IWD (2011) A different look at gateways: drake passage and Australia/Antarctica. In: Anderson JB, Wellner JS (eds) Tectonic, climatic, and cryospheric evolution of the Antarctic Peninsula. Special Publications, vol 63. American Geophysical Union, Washington, DC, pp 5–33Google Scholar
  48. Lewis PO (2001) A likelihood approach to estimating phylogeny from discrete morphological character data. Syst Biol 50:913–925PubMedCrossRefGoogle Scholar
  49. Lillegraven JA (1974) Biogeographical considerations of the marsupial-placental dichotomy. Annu Rev Ecol Syst 5:263–283CrossRefGoogle Scholar
  50. Ludbrook J (2010) Linear regression analysis for comparing two measurers or methods of measurement: But which regression? Clin Exp Pharmacol Physiol 37:692–699. doi: 10.1111/j.1440-1681.2010.05376.x PubMedCrossRefGoogle Scholar
  51. Ludbrook J (2012) A primer for biomedical scientists on how to execute Model II linear regression analysis. Clin Exp Pharmacol Physiol 39:329–335. doi: 10.1111/j.1440-1681.2011.05643.x PubMedCrossRefGoogle Scholar
  52. Luo Z-X, Ji Q (2005) New study on dental and skeletal features of the Cretaceous “symmetrodontan” mammal Zhangheotherium. J Mamm Evol 12:337–357. doi: 10.1007/s10914-005-6958-x CrossRefGoogle Scholar
  53. Luo Z-X, Ji Q, Wible JR, Yuan C-X (2003) An early cretaceous tribosphenic mammal and metatherian evolution. Science 302:1934–1940PubMedCrossRefGoogle Scholar
  54. MacPhee RDE, Reguero MA (2010) Reinterpretation of a Middle Eocene record of Tardigrada (Pilosa, Xenarthra, Mammalia) from La Meseta Formation, Seymour Island, West Antarctica. Am Mus Novit 3689:1–21CrossRefGoogle Scholar
  55. Maddison, WP, Maddison DR (2011) Mesquite: a modular system for evolutionary analysis. Version 2.75 http://mesquiteproject.org
  56. Marshall LG (1987) Systematics of Itaboraian (middle Paleocene) age “opossum-like” marsupials from the limestone Quarry at Sao Jose de Itaborai, Brazil. In: Archer M (ed) Possums and opossums: studies in evolution. Surrey Beatty and Sons and the Royal Zoological Society of New South Wales, Sydney, pp 91–160Google Scholar
  57. Marshall LG, de Muizon C (1988) The dawn of the age of mammals in South America. Natl Geogr Res 4:23–55Google Scholar
  58. Matthew WD (1915) Climate and evolution. Ann N Y Acad Sci 24:171–318CrossRefGoogle Scholar
  59. Meredith RW, Westerman M, Case JA, Springer MS (2008) A phylogeny and timescale for marsupial evolution based on sequences for five nuclear genes. J Mamm Evol 15:1–36CrossRefGoogle Scholar
  60. Meredith RW, Krajewski C, Westerman M, Springer MS (2009a) Relationships and divergence times among the orders and families of Marsupialia. Mus North Ariz Bull 65:383–406Google Scholar
  61. Meredith RW, Westerman M, Springer MS (2009b) A phylogeny of Diprotodontia (Marsupialia) based on sequences for five nuclear genes. Mol Phylogenet Evol 51:554–571PubMedCrossRefGoogle Scholar
  62. Morrone JJ (2002) Biogeographical regions under track and cladistic scrutiny. J Biogeogr 29:149–152CrossRefGoogle Scholar
  63. Munemasa M, Nikaido M, Donnellan S, Austin CC, Okada N, Hasegawa M (2006) Phylogenetic analysis of diprotodontian marsupials based on complete mitochondrial genomes. Genes Genet Syst 81:181–191PubMedCrossRefGoogle Scholar
  64. Nilsson MA, Arnason U, Spencer PBS, Janke A (2004) Marsupial relationships and a timeline for marsupial radiation in South Gondwana. Gene 340:189–196PubMedCrossRefGoogle Scholar
  65. Nilsson MA, Churakov G, Sommer M, Tran NV, Zemann A, Brosius J, Schmitz J (2010) Tracking marsupial evolution using archaic genomic retroposon insertions. PLoS Biol 8:e1000436PubMedCrossRefGoogle Scholar
  66. Nylander JAA, Olsson U, Alstrom P, Sanmartin I (2008) Accounting for phylogenetic uncertainty in biogeography: a Bayesian approach to dispersal-vicariance analysis of the thrushes (Aves: Turdus). Syst Biol 57:257–268. doi: 10.1080/10635150802044003 PubMedCrossRefGoogle Scholar
  67. Pascual R, Archer M, Ortiz-Jaureguizar E, Prado JL, Godthelp H, Hand SJ (1992) First discovery of monotremes in South America. Nature 356:704–705CrossRefGoogle Scholar
  68. Pascual R, Goin FJ, Balarino L, Udrizar Sauthier DE (2002) New data on the Paleocene monotreme Monotrematum sudamericanum, and the convergent evolution of triangulate molars. Acta Palaeontol Pol 47:487–492Google Scholar
  69. Phillips MJ, McLenachan PA, Down C, Gibb GC, Penny D (2006) Combined mitochondrial and nuclear DNA sequences resolve the interrelations of the major Australasian marsupial radiations. Syst Biol 55:122–137PubMedCrossRefGoogle Scholar
  70. Prasad GVR, Godinot M (1994) Eutherian tarsal bones from the Late Cretaceous of India. J Paleontol 68:892–902Google Scholar
  71. R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  72. Ray DA, Xing J, Salem A-H, Batzer MA (2006) SINEs of a nearly perfect character. Syst Biol 55:928–935PubMedCrossRefGoogle Scholar
  73. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542. doi: 10.1093/sysbio/sys029 PubMedCrossRefGoogle Scholar
  74. Rougier GW, Wible JR, Novacek MJ (1998) Implications of Deltatheridium specimens for early marsupial history. Nature 396:459–463PubMedCrossRefGoogle Scholar
  75. Sánchez-Villagra MR, Wible JR (2002) Patterns of evolutionary transformation in the petrosal bone and some basicranial features in marsupial mammals, with special reference to didelphids. J Zool Syst Evol Res 40:26–45CrossRefGoogle Scholar
  76. Sánchez-Villagra MR, Ladevèze S, Horovitz I, Argot C, Hooker JJ, Macrini TE, Martin T, Moore-Fay S, de Muizon C, Schmelzle T, Asher RJ (2007) Exceptionally preserved North American Paleogene metatherians: adaptations and discovery of a major gap in the opossum fossil record. Biol Lett 3:318–322PubMedCrossRefGoogle Scholar
  77. Schmelzle T, Nummela S, Sánchez-Villagra MR (2005) Phylogenetic transformations of the ear ossicles in marsupial mammals, with special reference to diprotodontians: a character analysis. Ann Carnegie Mus 74:189–200CrossRefGoogle Scholar
  78. Sigé B, Archer M, Crochet J-Y, Godthelp H, Hand S, Beck RMD (2009) Chulpasia and Thylacotinga, late Paleocene-earliest Eocene trans-Antarctic Gondwanan bunodont marsupials: new data from Australia. Geobios 42:813–823CrossRefGoogle Scholar
  79. Springer MS, Westerman M, Kavanagh JR, Burk A, Woodburne MO, Kao DJ, Krajewski C (1998) The origin of the Australasian marsupial fauna and the phylogenetic affinities of the enigmatic monito del monte and marsupial mole. Proc R Soc B Biol Sci 265:2381–2386CrossRefGoogle Scholar
  80. Springer MS, Meredith RW, Janecka JE, Murphy WJ (2011) The historical biogeography of Mammalia. Phil Trans R Soc B Biol Sci 366:2478–2502. doi: 10.1098/rstb.2011.0023 CrossRefGoogle Scholar
  81. Swofford DL (2002) PAUP*: phylogenetic analysis using parsimony (*and other methods). Sinauer Associates, Inc., SunderlandGoogle Scholar
  82. Szalay FS (1982) A new appraisal of marsupial phylogeny and classification. In: Archer M (ed) Carnivorous marsupials. Royal Zoological Society of New South Wales, Mosman, pp 621–640Google Scholar
  83. Szalay FS (1994) Evolutionary history of the marsupials and an analysis of osteological characters. Cambridge University Press, CambridgeGoogle Scholar
  84. Szalay FS, Sargis EJ (2001) Model-based analysis of postcranial osteology of marsupials from the Palaeocene of Itaboraí (Brazil) and the phylogenetics and biogeography of Metatheria. Geodiversitas 23:139–302Google Scholar
  85. Szalay FS, Sargis EJ (2006) Cretaceous therian tarsals and the metatherian-eutherian dichotomy. J Mamm Evol 13:171–210CrossRefGoogle Scholar
  86. Voss RS, Jansa SA (2009) Phylogenetic relationships and classification of didelphid marsupials, an extant radiation of New World metatherian mammals. Bull Am Mus Nat Hist 322:1–177CrossRefGoogle Scholar
  87. Waddell PJ, Kishino H, Ota R (2001) A phylogenetic foundation for comparative mammalian genomics. Genome Inform 12:141–151PubMedGoogle Scholar
  88. Warton DI, Wright IJ, Falster DS, Westoby M (2006) Bivariate line-fitting methods for allometry. Biol Rev 81:259–291. doi: 10.1017/S1464793106007007 PubMedCrossRefGoogle Scholar
  89. Warton DI, Duursma RA, Falster DS, Taskinen S (2012) smatr 3—an R package for estimation and inference about allometric lines. Methods Ecol Evol 3:257–259CrossRefGoogle Scholar
  90. Wiens JJ (2001) Character analysis in morphological phylogenetics: problems and solutions. Syst Biol 50:689–699PubMedCrossRefGoogle Scholar
  91. Wilkinson M (2003) Missing entries and multiple trees: instability, relationships, and support in parsimony analysis. J Vertebr Paleontol 23:986–986CrossRefGoogle Scholar
  92. Woodburne MO, Case JA (1996) Dispersal, vicariance, and the late Cretaceous to early Tertiary land mammal biogeography from South America to Australia. J Mamm Evol 3:121–161CrossRefGoogle Scholar
  93. Yu Y, Harris AJ, He XJ (2010) S-DIVA (Statistical Dispersal-Vicariance Analysis): a tool for inferring biogeographic histories. Mol Phylogenet Evol 56(2):848–850. doi: 10.1016/j.ympev.2010.04.011 PubMedCrossRefGoogle Scholar
  94. Yu Y, Harris AJ, He XJ (2011) RASP (Reconstruct Ancestral State in Phylogenies) 2.0bGoogle Scholar
  95. Zuccon A, Zuccon D (2010) MrEnt v.2.2. Program distributed by the authors. http://www.mrent.org

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.School of Biological, Earth and Environmental SciencesUniversity of New South WalesSydneyAustralia
  2. 2.Department of MammalogyAmerican Museum of Natural HistoryNew YorkUSA

Personalised recommendations