Naturwissenschaften

, Volume 99, Issue 7, pp 515–522 | Cite as

Favourability: concept, distinctive characteristics and potential usefulness

Concepts & Synthesis

Abstract

The idea of analysing the general favourability for the occurrence of an event was presented in 2006 through a mathematical function. However, even when favourability has been used in species distribution modelling, the conceptual framework of this function is not yet well perceived among many researchers. The present paper is conceived for providing a wider and more in-depth presentation of the idea of favourability; concretely, we aimed to clarify both the concept and the main distinctive characteristics of the favourability function, especially in relation to probability and suitability, the most common outputs in species distribution modelling. As the capabilities of the favourability function go beyond species distribution modelling, we also illustrate its usefulness for different research disciplines for which this function remains unknown. In particular, we stressed that the favourability function has potential to be applied in all the cases where the probability of occurrence of an event is analysed, such as, for example, habitat selection or epidemiological studies.

Keywords

Epidemiology Favourability function Habitat selection Habitat suitability Probability of occurrence Species distribution modelling 

References

  1. Acevedo P, Cassinello J, Hortal J, Gortázar C (2007) Invasive exotic aoudad (Ammotragus lervia) as a major threat to native Iberian ibex (Capra pyrenaica): a habitat suitability model approach. Divers Distrib 13:587–597CrossRefGoogle Scholar
  2. Acevedo P, Ward AI, Real R, Smith GC (2010) Assessing the biogeographical relationships of ecologically related species using favourability functions: a case study on British deer. Divers Distrib 16:515–528CrossRefGoogle Scholar
  3. Acevedo P, Farfán MA, Márquez AL, Delibes-Mateos M, Real R, Vargas JM (2011) Past, present and future of wild ungulates in relation to changes in land use. Landsc Ecol 26:19–31CrossRefGoogle Scholar
  4. Acevedo P, Jiménez-Valverde A, Melo-Ferreira J, Real R, Alves PC (2012) Parapatric species and the implications for climate change studies: a case study on hares in Europe. Glob Chang Biol. doi:10.1111/j.1365-2486.2012.02655.x
  5. Albert CH, Thuiller W (2008) Favourability functions versus probability of presence: advantages and misuses. Ecography 31:417–422CrossRefGoogle Scholar
  6. Amici A, Pelorosso R, Serrani F, Boccia L (2009) A nesting site suitability model for rock partridge (Alectoris graeca) in the Apennine Mountains using logistic regression. Ital J Anim Sci 8:751–753Google Scholar
  7. Araújo MB, New M (2007) Ensemble forecasting of species distributions. Trends Ecol Evol 22:42–47PubMedCrossRefGoogle Scholar
  8. Barbosa AM, Real R, Vargas JM (2009) Transferability of environmental favourability models in geographic space: the case of the Iberian desman (Galemys pyrenaicus) in Portugal and Spain. Ecol Model 220:747–754CrossRefGoogle Scholar
  9. Barbosa AM, Real R, Vargas JM (2010) Use of coarse-resolution models of species' distributions to guide local conservation inferences. Conserv Biol 24:1378–1387PubMedCrossRefGoogle Scholar
  10. Bernardo JM, Smith AFM (2000) Bayesian theory, Wiley series in probability and statistics. Wiley, HobokenGoogle Scholar
  11. Boadella M, Barasona JA, Pozio E, Montoro V, Vicente J, Gortázar C, Acevedo P (2012) Spatial-temporal trend and risk factors for Trichinella sp. infection in wild boar (Sus scrofa) populations of central Spain: a long-term study. Int J Parasitol (in press)Google Scholar
  12. Cramer JS (1999) Predictive performance of binary logit model in unbalanced samples. J R Stat Soc D 48:85–94CrossRefGoogle Scholar
  13. Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ (2011) A statistical explanation of MaxEnt for ecologist. Divers Distrib 17:43–57CrossRefGoogle Scholar
  14. Estrada A, Real R, Vargas JM (2008) Using crisp and fuzzy modelling to identify favourability hotspots useful to perform gap analysis. Biodivers Conserv 17:857–871CrossRefGoogle Scholar
  15. Estrada-Peña A, Acevedo P, Ruiz-Fons F, Gortázar C, de la Fuente J (2008) Evidence of the importance of host habitat use in predicting the dilution effect of wild boar for deer exposure to Anaplasma spp. PLoS One 3(8):e2999. doi:10.1371/journal.pone.0002999 PubMedCrossRefGoogle Scholar
  16. Fernández MC, Durán AC, Real R, López D, Fernández B, de Andrés AV, Arqué JM, Gallego A, Sans-Coma V (2000) Coronary artery anomalies and aortic valve morphology in the Syrian hamster. Lab Ani-UK 34:145–154CrossRefGoogle Scholar
  17. Franklin J (2009) Mapping species distributions. Spatial inference and prediction. Cambridge University Press, CambridgeGoogle Scholar
  18. Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009CrossRefGoogle Scholar
  19. Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135:147–186CrossRefGoogle Scholar
  20. Gutiérrez-Illán J, Gutiérrez D, Wilson RW (2010) The contributions of topoclimate and land cover to species distributions and abundance: fine-resolution tests for a mountain butterfly fauna. Glob Ecol Biogeogr 19:15–173Google Scholar
  21. Hastie TJ, Tibshirani RJ (1990) Generalized additive models. Chapman & Hall, LondonGoogle Scholar
  22. Hirzel AH, Hausser J, Chessel D, Perrin N (2002) Ecological-niche factor analysis: how to compute habitat-suitability maps without absence data? Ecology 83:2027–2036CrossRefGoogle Scholar
  23. Hirzel AH, Le Lay G, Helfer V, Randin C, Guisan A (2006) Evaluating the ability of habitat suitability models to predict species presences. Ecol Model 199:142–152CrossRefGoogle Scholar
  24. Hirzel AH, Braunisch V, Le Lay G. Hausser J, Perrin N (2008) BIOMAPPER 4.0. Laboratoy of Conservation Biology, Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland. Available from http://www.unil.ch/biomapper
  25. Hosmer DW, Lemeshow S (2000) Applied logistic regression. Wiley Interscience, New YorkCrossRefGoogle Scholar
  26. Jiménez-Valverde A, Lobo JM (2007) Threshold criteria for conversion of probability of species presence to either-or presence–absence. Acta Oecol 31:361–369CrossRefGoogle Scholar
  27. Jiménez-Valverde A, Peterson AT, Soberón J, Overton J, Aragón P, Lobo JM (2011) Use of niche models in invasive species risk assessments. Biol Invasions 13:2785–2797CrossRefGoogle Scholar
  28. Keating KA, Cherry S (2004) Use and interpretations of logistic regression in habitat-selection studies. J Wildl Manage 68:774–789CrossRefGoogle Scholar
  29. Laplace PS (1825) Essai philosophique sur les probabilités. Bachelier, ParisGoogle Scholar
  30. Liu C, Berry PM, Dawson TP, Pearson RG (2005) Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28:385–393CrossRefGoogle Scholar
  31. Manly BFJ, McDonald LL, Thomas DL, McDonald TL, Erickson W (2002) Resource selection by animals: statistical design and analysis for field studies, 2nd edn. Kluwer, New YorkGoogle Scholar
  32. Mörner T, Obendorf D, Artois M, Woodford M (2002) Surveillance and monitoring of wildlife diseases. Rev Sci Tech Off Int Epiz 21:67–76Google Scholar
  33. Muñoz AR, Real R (2006) Assessing the potential range expansion of the exotic monk parakeet in Spain. Divers Distrib 12:656–665CrossRefGoogle Scholar
  34. Nielsen C, Hartvig P, Kollmann J (2008) Predicting the distribution of the invasive alien Heracleum mantegazzianum at two different spatial scales. Divers Distrib 14:307–317CrossRefGoogle Scholar
  35. Peterson AT (2008) Biogeography of diseases: a framework for analysis. Naturwissenschaften 95:483–491PubMedCrossRefGoogle Scholar
  36. Pfeiffer D, Robinson T, Stevenson M, Stevens K, Rogers D, Clements A (2008) Spatial analysis in epidemiology. Oxford University Press, New YorkCrossRefGoogle Scholar
  37. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259CrossRefGoogle Scholar
  38. Real R, Barbosa AM, Vargas JM (2006) Obtaining environmental favourability functions from logistic regression. Environ Ecol Stat 13:237–245CrossRefGoogle Scholar
  39. Real R, Barbosa AM, Rodríguez A, García FJ, Vargas JM, Palomo LJ, Delibes M (2009) Conservation biogeography of ecologically interacting species: the case of the Iberian lynx and the European Rabbit. Divers Distrib 15:390–400CrossRefGoogle Scholar
  40. Real R, Márquez AL, Olivero J, Estrada A (2010) Are species distribution models in climate warming scenarios useful for informing emission policy planning? An uncertainty assessment using fuzzy logic. Ecography 33:304–314Google Scholar
  41. Robertson MP, Villet MH, Palmer AR (2004) A fuzzy classification technique for predicting species’ distributions: applications using invasive alien plants and indigenous insects. Divers Distrib 10:461–474CrossRefGoogle Scholar
  42. Rochlin I, Turbow D, Gomez F, Ninivaggi DV, Campbell SR (2011) Predictive mapping of human risk for West Nile Virus (WNV) based on environmental and socioeconomic factors. PLoS One 6(8):e23280. doi:10.1371/journal.pone.0023280 PubMedCrossRefGoogle Scholar
  43. Royle JA, Chandler RB, Yackulic C, Nichols JD (2012) Likelihood analysis of species occurrence probability from presence-only data for modelling species distributions. Methods Ecol Evol. doi:10.1111/j.2041-210X.2011.00182.x
  44. Sutherst RW, Bourne AS (2009) Modelling non-equilibrium distributions of invasive species: a tale of two modelling paradigms. Biol Invasions 11:1231–1237CrossRefGoogle Scholar
  45. Tabachnick BG, Fidell LS (1996) Using multivariate analysis, 3rd edn. HarperCollins College, NorthridgeGoogle Scholar
  46. Thuiller W, Lafourcade B, Engler R, Araújo MB (2009) BIOMOD—a platform for ensemble forecasting of species distributions. Ecography 32:369–373CrossRefGoogle Scholar
  47. Vicente J, Hofle U, Garrido JM, Fernandez-de-Mera IG, Acevedo P, Juste R, Barral M, Gortázar C (2007) Risk factors associated with the prevalence of tuberculosis-like lesions in fenced wild boar and red deer in south central Spain. Vet Res 38:451–464PubMedCrossRefGoogle Scholar
  48. Webber BL, Yates CJ, Le Maitre DC, Scott JK, Kriticos DJ, Ota N, McNeill A, Le Roux JJ, Midgley GF (2011) Modelling horses for novel climate courses: insights from projecting potential distributions of native and alien Australian acacias with correlative and mechanistic models. Divers Distrib 17:978–1000CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Biogeography, Diversity, and Conservation Research Team, Department of Animal Biology, Faculty of SciencesUniversity of MalagaMalagaSpain
  2. 2.Campus Agrario de VairãoCIBIO/UP—Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do PortoVairãoPortugal
  3. 3.Instituto de Investigación en Recursos Cinegéticos (CSIC-UCLM-JCCM)Ciudad RealSpain
  4. 4.Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTACampus de la Universitat Autònoma de BarcelonaBellaterra, BarcelonaSpain

Personalised recommendations