Skip to main content
Log in

The role of body size versus growth on the decision to migrate: a case study with Salmo trutta

  • Original Paper
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

In a population exhibiting partial migration (i.e. migration and residency tactics occur in the same population), the mechanisms underlying the tactical choice are still unclear. Empirical studies have highlighted a variety of factors that could influence the coexistence of resident and migratory individuals, with growth and body size considered to be key factors in the decision to migrate. Most studies suffer from at least one of the two following caveats: (1) survival and capture probabilities are not taken into account in the data analysis, and (2) body size is often used as a proxy for individual growth. We performed a capture–mark–recapture experiment to study partial migration among juvenile brown trout Salmo trutta at the end of their first year, when a portion of the population emigrate from the natal stream while others choose residency tactic. Bayesian multistate capture–recapture models accounting for survival and recaptures probabilities were used to investigate the relative role of body size and individual growth on survival and migration probabilities. Our results show that, despite an apparent effect of both size and growth on migration, growth is the better integrative parameter and acts directly on migration probability whereas body size acts more strongly on survival. Consequently, we recommend caution if size is used as a proxy for growth when studying the factors that drive partial migration in juvenile salmonid species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Acolas ML, Roussel JM, Lebel JM, Baglinière JL (2007) Laboratory experiment on survival, growth and tag retention following PIT injection into the body cavity of juvenile brown trout (Salmo trutta). Fish Res 86:280–284

    Article  Google Scholar 

  • Alerstam T, Hedenström A, Akesson S (2003) Long-distance migration: evolution and determinants. Oikos 103:247–260

    Article  Google Scholar 

  • Baglinière JL, Maisse G, Lebail PY, Nihouarn A (1989) Population dynamics of brown trout (Salmo trutta) in a tributary in brittany (France): spawning and juveniles. J Fish Biol 34:97–110

    Article  Google Scholar 

  • Balbontín J, Møller AP, Hermosell IG, Marzal A, Reviriego M, de Lope F (2009) Individual responses in spring arrival date to ecological conditions during winter and migration in a migratory bird. J Anim Ecol 78:981–989

    Article  PubMed  Google Scholar 

  • Bennetts RE, Nichols JD, Lebreton JD, Pradel R, Hines JE, Kitchens WM (2001) Methods for estimating dispersal probabilities and related parameters using marked animals. In: Clobert L, Danchin E, Dhondt AA, Nichols JD (eds) Dispersal. Oxford University press, Oxford, pp. 3–18

  • Bohlin T, Dellefors C, Faremo U (1993) Optimal time and size for smolt migration in wild sea-trout (Salmo trutta). Can J Fish Aquat Sci 50:224–232

    Article  Google Scholar 

  • Bohlin T, Dellefors C, Faremo U (1996) Date of smolt migration depends on body-size but not age in wild sea-run brown trout. J Fish Biol 49:157–164

    Article  Google Scholar 

  • Bohlin T, Pettersson J, Degerman E (2001) Population density of migratory and resident brown trout (Salmo trutta) in relation to altitude: evidence for a migration cost. J Anim Ecol 70:112–121

    Article  Google Scholar 

  • Boyle WA (2008) Partial migration in birds: tests of three hypotheses in a tropical lekking frugivore. J Anim Ecol 77:1122–1128

    Article  PubMed  Google Scholar 

  • Bradshaw CJA, Mollet HF, Meekan MG (2007) Inferring population trends for the world’s largest fish from mark–recapture estimates of survival. J Anim Ecol 76:480–489

    Article  PubMed  Google Scholar 

  • Cam E, Orao D, Pradel R, Jimenez J (2004) Assessment of hypotheses about dispersal in a long-lived seabird using multistate capture–recapture models. J Anim Ecol 73:723–736

    Article  Google Scholar 

  • Carlson SM, Letcher BH (2003) Variation in brook and brown trout survival within and among seasons, species, and age classes. J Fish Biol 63:780–794

    Article  Google Scholar 

  • Charles K, Roussel JM, Cunjak RA (2004) Estimating the contribution of sympatric anadromous and freshwater resident brown trout to juvenile production. Mar Freshwater Res 55:185–191

    Article  CAS  Google Scholar 

  • Charles K, Guyomard R, Hoyheim B, Ombredane D, Bagliniere JL (2005) Lack of genetic differentiation between anadromous and resident sympatric brown trout (Salmo trutta) in a Normandy population. Aquat Living Resour 18:65–69

    Article  CAS  Google Scholar 

  • Choquet R, Reboulet AM, Lebreton JD, Gimenez O, Pradel R (2005) U-CARE 2.2 User’s manual. CEFE, Montpellier, France (http://ftp.cefe.cnrs.fr/biom/Soft-CR/)

  • Cromwell KJ, Kennedy BP (2011) Diel distribution, behaviour and consumption of juvenile Chinook salmon (Oncorhynchus tshawytscha) in a wilderness stream. Ecol Freshw Fish 20:421–430

    Article  Google Scholar 

  • Cucherousset J, Ombredane D, Charles K, Marchand F, Bagliniere JL (2005a) A continuum of life history tactics in a brown trout (Salmo trutta) population. Can J Fish Aquat Sci 62:1600–1610

    Article  Google Scholar 

  • Cucherousset J, Roussel JM, Keeler R, Cunjak RA, Stump R (2005b) The use of two new portable 12-mm PIT tag detectors to track small fish in shallow streams. N Am J Fish Manag 25:270–274

    Article  Google Scholar 

  • Cucherousset J, Ombredane D, Bagliniere JL (2006) Linking juvenile growth and migration behaviour of brown trout (Salmo trutta) using individual PIT-tagging. Cah Biol Mar 47:73–78

    Google Scholar 

  • Dingle H (2006) Animal migration: is there a common migratory syndrome? J Ornithol 147:212–220

    Article  Google Scholar 

  • Dingle H, Drake VA (2007) What is migration? Bioscience 57:113–121

    Article  Google Scholar 

  • Forseth T, Naesje TF, Jonsson B, Harsaker K (1999) Juvenile migration in brown trout: a consequence of energetic state. J Anim Ecol 68:783–793

    Article  Google Scholar 

  • Garcia de Leaniz C, Fleming IA, Einum S, Verspoor E, Jordan GR, Consuegra S, Aubin Horth N, Lajus D, Letcher BH, Youngson AF, Webb A, Vollestad LA, Villanueva B, Ferguson A, Quinn TP (2007) A critical review of adaptative genetic variation in Atlantic salmon: implications for conservation. Biol Rev 82:173–211

    Article  PubMed  CAS  Google Scholar 

  • Gelman A, Carlin JB, Sterns HS, Rubin DB (1995) Bayesian data analysis. Chapman and Hall, London

    Google Scholar 

  • Gibbons JW, Andrews KM (2004) PIT tagging: simple technology at its best. Bioscience 54:447–454

    Article  Google Scholar 

  • Gimenez O, Rossi V, Choquet R, Dehais C, Doris B, Varella H, Vila JP, Pradel R (2007) State-space modelling of data on marked individuals. Ecol Model 206(3-4):431–438

    Article  Google Scholar 

  • Grayson KL, Wilbur HM (2009) Sex- and context-dependent migration in a pond-breeding amphibian. Ecology 90:306–312

    Article  PubMed  Google Scholar 

  • Greenberg LA, Giller PS (2000) The potential of flat-bed passive integrated transponder antennae for studying habitat use by stream fishes. Ecol Freshw Fish 9:74–80

    Article  Google Scholar 

  • Gross MR (1987) Evolution of diadromy in fishes. Am Fish So Symp 1:14–25

    Google Scholar 

  • Gross MR (1996) Alternative reproductive strategies and tactics: diversity within sexes. Trends Ecol Evol 11:92–98

    Article  PubMed  CAS  Google Scholar 

  • Haugen TO, Winfield IJ, Vollestad LA, Fletcher JM, James JB, Stenseth NC (2006) The ideal free pike: 50 years of fitness-maximizing dispersal in Windermere. Proc R Soc Lond 273:2917–2924

    Article  Google Scholar 

  • Hebblewhite M, Merrill EH (2009) Trade-offs between predation risk and forage differ between migrant strategies in a migratory ungulate. Ecology 90:3445–3454

    Article  PubMed  Google Scholar 

  • Hedenström A (2003) Scaling migration speed in animals that run, swim and fly. J Zool 259:155–160

    Article  Google Scholar 

  • Hendry AP, Bohlin T, Jonsson B, Berg OK (2004) To sea or not to sea. In: Hendry AP, Stearns SC (eds) Evolution illuminated. Salmon and their relative. Oxford University Press, New York, pp 92–125

    Google Scholar 

  • Hyvärinen P, Vehanen T (2004) Effect of brown trout body size on post-stocking survival and pike predation. Ecol Freshw Fish 13:77–84

    Article  Google Scholar 

  • Jahn AE, Levey DJ, Hostetler JA, Mamani AM (2010) Determinants of partial bird migration in the Amazon Basin. J Anim Ecol 79:983–992

    Article  PubMed  Google Scholar 

  • Jonsson B (1985) Life history patterns of freshwater resident and sea-run migrant brown trout in Norway. Trans Am Fish Soc 114:182–194

    Article  Google Scholar 

  • Jonsson B, Jonsson N (1993) Partial migration—niche shift versus sexual maturation in fishes. Rev Fish Biol Fish 3:348–365

    Article  Google Scholar 

  • Jonsson B, Jonsson N (2009) Migratory timing, marine survival and growth of anadromous brown trout Salmo trutta in the river Imsa, Norway. J Fish Biol 74:621–638

    Article  PubMed  CAS  Google Scholar 

  • Jonsson B, Jonsson N (2011) Migration. In: Jonsson B, Jonsson N (eds) Ecology of atlantic salmon and brown trout: Habitat as a template for life histories. Fish and fisheries series 33, Springer pp 247–325

  • Kerr LA, Secor DH, Piccoli PM (2009) Partial migration of fishes as exemplified by the estuarine-dependent white perch. Fisheries 34:114–123

    Article  Google Scholar 

  • Klemetsen A, Amundsen PA, Dempson JB, Jonsson B, Jonsson N, O’Connell MF, Mortensen E (2003) Atlantic salmon Salmo salar L., brown trout Salmo trutta L. and Arctic charr Salvelinus alpinus (L.): a review of aspects of their life histories. Ecol Freshw Fish 12:1–59

    Article  Google Scholar 

  • Knudsen CM, Johnston MV, Schroder SL, Bosch WJ, Fast DE, Strom CR (2009) Effects of passive integrated transponder tags on smolt-to-adult recruit survival, growth, and behavior of Hatchery Spring Chinook Salmon. N Am J Fish Manag 29:658–669

    Article  Google Scholar 

  • Knutsen JA, Knutsen H, Gjosaeter J, Jonsson B (2001) Food of anadromous brown trout at sea. J Fish Biol 59:533–543

    Article  Google Scholar 

  • L’Abée-Lund JH, Jonsson B, Jensen AJ, Saettem LM, Heggberget TG, Johnsen BO, Naesje TF (1989) Latitudinal variation in life-history characteristics of sea-run migrant brown trout (Salmo trutta). J Anim Ecol 58:525–542

    Article  Google Scholar 

  • Labonne J, Gaudin P (2005) Exploring population dynamics patterns in a rare fish, Zingel asper, through capture–mark–recapture methods. Conserv Biol 19:463–472

    Article  Google Scholar 

  • Lahti K, Laurila A, Enberg K, Piironen J (2001) Variation in aggressive behaviour and growth rate between populations and migratory forms in the brown trout, Salmo trutta. Anim Behav 62:935–944

    Article  Google Scholar 

  • Lahti K, Huuskonen H, Laurila A, Piironen J (2002) Metabolic rate and aggressiveness between brown trout populations. Funct Ecol 16:167–174

    Article  Google Scholar 

  • Lund E, Olsen EM, Vøllestad LA (2003) First-year survival of brown trout in three Norwegian streams. J Fish Biol 62:323–340

    Article  Google Scholar 

  • Lundberg P (1988) The evolution of partial migration in birds. Trends Ecol Evol 3:172–175

    Article  PubMed  CAS  Google Scholar 

  • Lunn DJ, Thomas A, Best N, Spiegelhalter D (2000) WinBUGS: a Bayesian modelling framework: concepts, structure, and extensibility. Stat Comput 10:325–337

    Article  Google Scholar 

  • McDowall RM (1988) Diadromy in fishes. Migration between freshwater and marine environments. Timber, Croon Helm

    Google Scholar 

  • Metcalfe NB (1998) The interaction between behavior and physiology in determining life history patterns in Atlantic salmon (Salmo salar). Can J Fish Aquat Sci 55:93–103

    Article  Google Scholar 

  • Milner NJ, Elliott JM, Armstrong JD, Gardiner R, Welton JS, Ladle M (2003) The natural control of salmon and trout populations in streams. Fish Res 62:111–125

    Article  Google Scholar 

  • Morgan IJ, McCarthy ID, Metcalfe NB (2000) Life-history strategies and protein metabolism in overwintering juvenile Atlantic salmon: growth is enhanced in early migrants through lower protein turnover. J Fish Biol 56:637–647

    Article  Google Scholar 

  • Morinville GR, Rasmussen JB (2003) Early juvenile bioenergetic differences between anadromous and resident brook trout (Salvelinus fontinalis). Can J Fish Aquat Sci 60:401–410

    Article  Google Scholar 

  • Morita K, Yamamoto S, Hoshino N (2000) Extreme life history change of white-spotted char (Salvelinus leucomaenis) after damming. Can J Fish Aquat Sci 57:1300–1306

    Article  Google Scholar 

  • Nielsen C, Aarestrup K, Norum U, Madsen SS (2003) Pre-migratory differentiation of wild brown trout into migrant and resident individuals. J Fish Biol 63:1184–1196

    Article  Google Scholar 

  • O’Neal SL, Stanford JA (2011) Partial migration in a robust brown trout population of a Patagonian river. Trans Am Fish Soc 140:623–635

    Article  Google Scholar 

  • Ojanguren AF, Brana F (2003) Effects of size and morphology on swimming performance in juvenile brown trout (Salmo trutta L.). Ecol Freshw Fish 12:241–246

    Article  Google Scholar 

  • Økland F, Jonsson B, Jensen AJ, Hansen LP (1993) Is there a threshold size regulating seaward migration of brown trout and Atlantic salmon? J Fish Biol 42:541–550

    Article  Google Scholar 

  • Olsson IC, Greenberg LA, Bergman E, Wysujack K (2006) Environmentally induced migration: the importance of food. Ecol Lett 9:645–651

    Article  PubMed  Google Scholar 

  • Ombredane D, Bagliniere JL, Marchand F (1998) The effects of passive integrated transponder tags on survival and growth of juvenile brown trout (Salmo trutta L.) and their use for studying movement in a small river. Hydrobiologia 372:99–106

    Article  Google Scholar 

  • Perez-Tris J, Telleria JL (2002) Migratory and sedentary blackcaps in sympatric non-breeding grounds: implications for the evolution of avian migration. J Anim Ecol 71:211–224

    Article  Google Scholar 

  • Perret N, Pradel R, Miaud C, Grolet O, Joly P (2003) Transience, dispersal and survival rates in newt patchy populations. J Anim Ecol 72:567–575

    Article  Google Scholar 

  • Pradel R, Clobert J, Lebreton JD (1990) Recent developments for the analysis of capture–recapture multiple data sets. An example concerning two blue tit populations. The Ring 13:193–204

    Google Scholar 

  • Prentice EF, Flagg TA, McCutcheon CS (1990) The effect of passive integrated transponder (PIT) tags in salmonids. Am Fish Soc Symp 7:317–322

    Google Scholar 

  • Reed ET, Gauthier G, Pradel R, Lebreton JD (2003) Age and environmental conditions affect recruitment in greater snow geese. Ecology 84:219–230

    Article  Google Scholar 

  • Rikardsen AH, Amundsen PA, Knudsen R, Sandring S (2006) Seasonal marine feeding and body condition of sea trout Salmo trutta (L.) at its northern distribution area. ICES J Mar Sci 63:466–475

    Article  Google Scholar 

  • Roff DA (1996) The evolution of threshold traits in animals. Q Rev Biol 71:3–35

    Article  Google Scholar 

  • Salewski V, Bruderer B (2007) The evolution of bird migration—a synthesis. Naturwissenschaften 94:268–279

    Article  PubMed  CAS  Google Scholar 

  • Schofield MR, Barker RJ (2008) A unified capture–recapture framework. J Agric Biol Environ Stat 13:458–477

    Article  Google Scholar 

  • Schofield MR, Barker RJ, MacKenzie DI (2009) Flexible hierarchical mark–recapture modelling for open populations using WinBUGS. Environ Ecol Stat 16(3):369–387

    Article  Google Scholar 

  • Schwarz CJ, Schweigert JF, Arnason AN (1993) Estimating migration rates using tag-recovery data. Biometrics 49:177–193

    Article  Google Scholar 

  • Sigourney DB, Horton GE (2005) Electroshocking and PIT tagging of juvenile Atlantic salmon: are there interactive effects on growth and survival? N Am J Fish Manag 25:1016–1021

    Article  Google Scholar 

  • Sogard SM (1997) Size-selective mortality in the juvenile stage of teleost fishes: a review. Bull Mar Sci 60:1129–1157

    Google Scholar 

  • Stamps JA (1991) Why evolutionary issues are reviving interest in proximate behavioral mechanisms. Amer Zool 31:338–348

    Google Scholar 

  • Tanner MA, Wong WH (1987) The calculation of posterior distributions by data augmentation (with discussion). J Am Stat Assoc 82:529–550

    Google Scholar 

  • Theriault V, Dodson JJ (2003) Body size and the adoption of a migratory tactic in brook charr. J Fish Biol 63:1144–1159

    Article  Google Scholar 

  • Thériault V, Garant D, Bernatchez L, Dodson JJ (2007) Heritability of life-history tactics and genetic correlation with body size in a natural population of brook charr (Salvelinus fontinalis). J Evolution Biol 20:2266–2277

    Article  Google Scholar 

  • Thorpe JE, Mangel M, Metcalfe NB, Huntingford FA (1998) Modelling the proximate basis of salmonid life-history variation, with application to Atlantic salmon, Salmo salar L. Evol Ecol 12:581–599

    Article  Google Scholar 

  • Tsukamoto K, Arai T (2001) Facultative catadromy of the eel Anguilla japonica between freshwater and seawater habitats. Mar Ecol Prog Ser 220:265–276

    Article  Google Scholar 

  • Van Noordwijk AJ, Pulido F, Helm B, Coppack T, Delingat J, Dingle H, Hedenström A, Van der Jeugd H, Marchetti C, Nilsson A, Pérez-Tris J (2006) A framework for the study of genetic variation in migratory behaviour. J Ornithol 147:221–233

    Article  Google Scholar 

  • Wooton RJ (1990) Growth. In: Wooton RJ (ed) Ecology of teleost fishes, vol 24, Fish and fisheries series. Kluwer, London, pp 117–159

    Chapter  Google Scholar 

  • Zabel RW, Wagner T, Congleton JL, Smith SG, Williams JG (2005) Survival and selection of migrating salmon from capture–recapture models with individual traits. Ecol Appl 15:1427–1439

    Article  Google Scholar 

  • Zalewski M, Cowx IG (1990) Factors affecting the efficiency of electric fishing. In: Cowx IG, Lamarque P (eds) Fishing with electricity. Fishing News Books, Blackwell Scientific, Oxford, pp 64–91

    Google Scholar 

Download references

Acknowledgements

This study was carried out with the financial support of Le Conseil Régional de Basse-Normandie and the French National Institute for Agronomic Research (INRA) to ML Acolas (doctoral fellowship). Dominique Huteau has developed the portable PIT detectors used in this project. He is gratefully acknowledged, as well as Frédéric Marchand and Julien Tremblay for their broad participation to field work and especially tracking surveys. We wish to thank Richard Delanoé and the Office National de l’Eau et des Milieux Aquatiques (ONEMA) in Basse-Normandie for electrofishing surveys. We thank Martin Schlaepfer and Rick Cunjak for relevant comments on earlier draft and edition of the English style.

This experiment complies with the current laws of the country in which they were performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Acolas.

Additional information

Communicated by: Sven Thatje

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 81 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Acolas, M.L., Labonne, J., Baglinière, J.L. et al. The role of body size versus growth on the decision to migrate: a case study with Salmo trutta . Naturwissenschaften 99, 11–21 (2012). https://doi.org/10.1007/s00114-011-0861-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-011-0861-5

Keywords

Navigation