, 98:933 | Cite as

Nectar production dynamics and sugar composition in two Mucuna species (Leguminosae, Faboideae) with different specialized pollinators

  • Kayna AgostiniEmail author
  • Marlies Sazima
  • Leonardo Galetto
Original Paper


Nectar is secreted in particular rhythms throughout the lifespan of a flower, which allows determining the nectar production dynamics. This paper compares nectar features in Mucuna japira and Mucuna urens describing: dynamics of nectar production, floral response to nectar removal, resorption, nectar sugar composition, and variation in nectar sugar composition. M. japira inflorescence bears 12–21 yellow flowers, which are in anthesis for 7 days, whereas M. urens inflorescence bears 36–54 greenish flowers, but only 1–3 flowers are in anthesis simultaneously that last one night. Nectar volume and sugar concentration were measured, and the amount of sugar was estimated. Qualitative and quantitative nectar sugar composition was determined. Both species had a constant nectar sugar concentration (ca. 10% for M. japira and ca. 16% for M. urens) and secreted high volumes of nectar (ca. 340 μl per flower for M. japira and 310 μl per flower for M. urens), during 5 days for M. japira and 6 h for M. urens, but after the first removal, i.e., when flower opening mechanism is triggered, nectar production stops immediately. Nectar resorption occurred in both species. Nectar sugar composition showed some similarities between the species. Variation in nectar sugar composition occurred in both species. The Mucuna species are dependent on their pollinators to produce fruits and seeds, and they have different strategies to promote the necessary interaction with birds or bats, especially related to nectar and flower characteristics.


Mucuna japira Mucuna urens Nectar features Nectar resorption Glossophaga soricina Cacicus haemorrhous 



We thank four anonymous reviewers for their constructive criticisms that improved a previous version of this paper, the Instituto Florestal (Parque Estadual da Serra do Mar, Núcleo Picinguaba) for the permit to study pollination biology in protected public lands, Iara Bressan for technical help in the laboratory and Dewey Litwiller for English review. KA had a grant of FAPESP, MS has research grants from CNPq, and LG is a researcher from CONICET. This research was mainly supported by the State of São Paulo Research Foundation (FAPESP) as part of the Thematic Project Functional Gradient (Process Number 03/12595-7), within the BIOTA/FAPESP Program—The Biodiversity Virtual Institute ( COTEC/IF 41.065/2005 and IBAMA/CGEN 093/2005 permits. CONICET, SECyT (UNC), FONCYT, CAPES-SPU for additional financial support.


  1. Agostini K (2008) Ecologia da reprodução de duas species de Mucuna (Leguminosae, Faboideae, Phaseoleae)—embriologia, citogenética e variabilidade genética—do litoral norte de São Paulo. Thesis. Universidade Estadual de CampinasGoogle Scholar
  2. Agostini K, Sazima M, Sazima I (2006) Bird pollination of explosive flowers while foraging for nectar and caterpillars. Biotropica 38:674–678CrossRefGoogle Scholar
  3. Agostini K, Sazima M, Tozzi AMGA, Forni-Martins ER (2009) Microsporogenesis and pollen morphology of Mucuna japira Azevedo, Agostini & Sazima and M. urens (L.) Medikus. Phytomorphology 59:61–69Google Scholar
  4. Arroyo MTK (1981) Breeding systems and pollination biology in Leguminosae. In: Polhill RM, Raven PH (eds) Advances in legume systematics, part 2. Royal Botanic Garden, Kew, pp 723–769Google Scholar
  5. Baker HG (1970) Bat pollination in Central America. Rev Biol Trop 17:187–197Google Scholar
  6. Baker HG (1975) Sugar concentration in nectars from hummingbird flowers. Biotropica 7:37–41CrossRefGoogle Scholar
  7. Baker HG, Baker I (1983) Floral nectar sugar constituents in relation to pollinator type. In: Jones CE, Little RJ (eds) Handbook of experimental pollination biology. Van Nostrand Reinhold Co., New York, pp 117–141Google Scholar
  8. Baker HG, Baker I, Hodges SA (1998) Sugar composition of nectars and fruits consumed by birds and bats in the tropics and subtropics. Biotropica 30:559–586CrossRefGoogle Scholar
  9. Bernardello LM, Galetto L, Jaramillo J, Grijalba E (1994) Floral nectar and chemical composition of some species from Reserva Río Guajalito, Ecuador. Biotropica 26:113–116CrossRefGoogle Scholar
  10. Biernaskie JM, Cartar RV (2004) Variation in rate of nectar production depends on floral display size: a pollinator manipulation hypothesis. Funct Ecol 18:125–129CrossRefGoogle Scholar
  11. Bolten AB, Feinsinger P (1978) Why do hummingbird flowers secrete dilute nectar? Biotropica 10:307–309CrossRefGoogle Scholar
  12. Búrquez A, Corbet SA (1991) Do flowers reabsorb nectar? Funct Ecol 5:369–379CrossRefGoogle Scholar
  13. Calder WA (1979) On the temperature-dependency of optimal nectar concentrations for birds. J Theor Biol 78:185–196PubMedCrossRefGoogle Scholar
  14. Canto A, Pérez R, Medrano M, Castellanos MC, Herrera CM (2007) Intra-plant variation in nectar sugar composition in two Aguilegia species (Ranunculaceae): contrasting patterns under field and glasshouse conditions. Ann Bot 99:653–660PubMedCrossRefGoogle Scholar
  15. Castellanos MC, Wilson P, Thomson JD (2002) Dynamic nectar replenishment in flowers of Penstemon (Scrophulariaceae). Am J Bot 89:111–118PubMedCrossRefGoogle Scholar
  16. Cocucci AA, Galetto L, Sérsic A (1992) El síndrome floral de Caesalpinia gilliesii (Fabaceae—Caesalpinioideae). Darwiniana 31:111–135Google Scholar
  17. Cruden RW, Hermann SM, Peterson S (1983) Patterns of nectar production and plant–pollinator coevolution. In: Bentley B, Elias TS (eds) The biology of nectaries. Columbia University Press, New York, pp 80–125Google Scholar
  18. Digby PGN, Kempton RA (1996) Multivariate analysis of ecological communities. Chapman and Hall, LondonGoogle Scholar
  19. Endress PK (1994) Diversity and evolutionary biology of tropical flowers. Cambridge University Press, CambridgeGoogle Scholar
  20. Faegri K, van der Pijl L (1980) The principles of pollination ecology. Pergamon Press, New YorkGoogle Scholar
  21. Freeman CE, Worthington RD, Jackson MS (1991) Floral nectar sugar compositions of some South and Southeast Asian species. Biotropica 23:568–574CrossRefGoogle Scholar
  22. Galetto L, Bernardello L (1992) Nectar secretion pattern and removal effects in six Argentinean Pitcairnioideae (Bromeliaceae). Bot Acta 105:292–299Google Scholar
  23. Galetto L, Bernardello G (1993) Nectar secretion pattern and removal effects in three species of Solanaceae. Can J Bot 71:1394–1398CrossRefGoogle Scholar
  24. Galetto L, Bernardello G (1995) Characteristics of nectar secretion by Lycium cestroides, L. ciliatum (Solanaceae) and their hybrid. Plant Species Biol 11:157–163CrossRefGoogle Scholar
  25. Galetto L, Bernardello G (2003) Nectar sugar composition in angiosperms from Chaco and Patagonia (Argentina): an animal visitor's matter? Plant Syst Evol 238:69–86Google Scholar
  26. Galetto L, Bernardello G (2004) Floral nectaries, nectar production dynamics and chemical composition in six Ipomoea species (Convolvulaceae) in relation to pollinators. Ann Bot 94:269–280PubMedCrossRefGoogle Scholar
  27. Galetto L, Bernardello G (2005) Nectar. In: Dafni A, Kevan P, Husband BC (eds) Practical pollination biology. Enviroquest, Ontario, pp 261–313Google Scholar
  28. Galetto L, Bernardello G, Rivera G (1997) Nectar, nectaries, flower visitors, and breeding system in some Argentinean Orchidaceae. J Plant Res 110:393–403CrossRefGoogle Scholar
  29. Galetto L, Bernardello G, Isele IC, Vesprini J, Speroni G, Berdue A (2000) Reproductive biology of Erythrina crista-galli (Fabaceae). Ann Mo Bot Gard 87:127–145CrossRefGoogle Scholar
  30. Herrera CM, Pérez R, Alonso C (2006) Extreme intra-plant variation in nectar sugar composition in an insect-pollinated perennial herb. Am J Bot 93:575–581PubMedCrossRefGoogle Scholar
  31. Johnson SD, Nicolson SW (2008) Evolutionary associations between nectar properties and specificity in bird pollination systems. Biol Lett 4:49–52PubMedCrossRefGoogle Scholar
  32. Koehler A, Verburgt L, McWhorter TJ, Nicolson SW (2010) Energy management on a nectar diet: can sunbirds meet the challenges of low temperature and dilute food? Funct Ecol. doi: 10.1111/j.1365-2435.2010.01728.x
  33. Ladley JJ, Kelly D, Robertson AW (1997) Explosive flowering, nectar production, breeding systems, and pollinators of New Zealand mistletoes (Loranthaceae). New Zeal J Bot 35:345–360Google Scholar
  34. Lotz CN, Schondube JE (2006) Sugar preferences in nectar- and fruit-eating birds: behavioral patterns and physiological causes. Biotropica 38:3–15Google Scholar
  35. Luyt R, Johnson SD (2002) Postpollination nectar reabsorption and its implications for fruit quality in an epiphytic orchid. Biotropica 34:442–446Google Scholar
  36. Martínez del Rio C, Baker HG, Baker I (1992) Ecological and evolutionary implications of digestive processes: bird preferences and the sugar constituents of floral nectar and fruit pulp. Experientia 48:544–551CrossRefGoogle Scholar
  37. Martínez del Rio C, Schondube JE, McWhorter TJ, Herrera LG (2001) Intake responses in nectar feeding birds: digestive and metabolic causes, osmoregulatory consequences, and coevolutionary effects. Am Zool 41:902–915CrossRefGoogle Scholar
  38. Morgensen HL (1975) Ovule abortion in Quercus (Fagaceae). Am J Bot 62:160–165CrossRefGoogle Scholar
  39. Musicante ML, Galetto L (2008) Características del néctar de Cologania broussonetti (Balb.) DC. (Fabaceae) y su relación con los visitantes florales. Ecol Austral 18:195–204Google Scholar
  40. Nepi M, Stpiczyńska M (2007) Nectar resorption and translocation in Cucurbita pepo L. and Platanthera chlorantha Custer (Rchb.). Plant Biology 9:93–100PubMedCrossRefGoogle Scholar
  41. Nepi M, Stpiczyńska M (2008) The complexity of nectar: secretion and resorption dynamically regulate features. Naturwissenschaften 95:177–184PubMedCrossRefGoogle Scholar
  42. Nicolson SW (2007) Nectar consumers. In: Nicolson SW, Pacini E, Nepi M (eds) Nectaries and nectar. Springer, The Netherlands, pp 289–342CrossRefGoogle Scholar
  43. Ordano M, Ornelas JF (2004) Generous-like flowers: nectar production in two epiphytic bromeliads and a meta-analysis of removal effects. Oecologia 140:495–505PubMedCrossRefGoogle Scholar
  44. Petanidou T, van Laere AJ, Smets E (1996) Change in floral nectar components from fresh to senescent flowers of Capparis spinosa (Capparidaceae), a nocturnally flowering Mediterranean shrub. Pl Syst Evol 199:79–92CrossRefGoogle Scholar
  45. Pizo MA (1996) Feeding ecology of two Cacicus species (Emberizidae, Icterinae). Ararajuba 4:87–92Google Scholar
  46. Pyke GH (1991) What does it cost a plant to produce floral nectar? Nature 350:58–59CrossRefGoogle Scholar
  47. Ragusa-Netto J (2002) Exploitation of Erythrina dominguezii Hassl. (Fabaceae) nectar by perching birds in a dry forest in western Brazil. Braz J Biol 62:877–883PubMedCrossRefGoogle Scholar
  48. Rivera GL, Galetto L, Bernardello G (1996) Nectar secretion pattern, removal effects, and breeding system of Ligaria cuneifolia (Loranthaceae). Can J Bot 74:1996–2001CrossRefGoogle Scholar
  49. Sazima I, Sazima M (1978) Polinização por morcegos em Mucuna urens (Leguminosae). In: Resumos da XXX Reunião da Sociedade Brasileira para o Progresso da Ciência: p. 419Google Scholar
  50. Sazima M, Buzato S, Sazima I (2003) Dyssochroma viridiflorum (Solanaceae): a reproductively bat-dependent epiphyte from the Atlantic rainforest in Brazil. Ann Bot 92:725–730PubMedCrossRefGoogle Scholar
  51. Sazima I, Sazima C, Sazima M (2009) A catch-all leguminous tree: Erythrina velutina visited and pollinated by vertebrates at an oceanic island. Aust J Bot 57:26–30CrossRefGoogle Scholar
  52. Sick H (1985) Ornitologia brasileira, uma introdução. Editora da Universidade de Brasília, BrasíliaGoogle Scholar
  53. Stiles FG (1978) Ecological and evolutionary implications of bird pollination. Am Zool 18:715–727Google Scholar
  54. Stiles FG, Freeman CE (1993) Patterns in floral nectar characteristics in some bird–plant species form Costa Rica. Biotropica 25:191–205CrossRefGoogle Scholar
  55. Stpiczyńska M (2003a) Nectar resorption in the spur of Platanthera chlorantha Custer (Rchb.) Orchidaceae—structural and microautoradiographic study. Plant Syst Evol 238:119–126Google Scholar
  56. Stpiczyńska M (2003b) Incorporation of [3H] sucrose after the resorption of nectar from the spur of Platanthera chlorantha (Custer) Rchb. Can J Bot 81:927–932CrossRefGoogle Scholar
  57. Sweeley EC, Bentley R, Makita M, Wells WW (1963) Gas liquid chromatography of trimethylsilyl derivatives of sugars and related substances. J Am Chem Soc 85:2497–2507CrossRefGoogle Scholar
  58. Torres C, Galetto L (1998) Patterns and implications of floral nectar secretion, chemical composition, removal effects and standing crop in Mandevilla pentlandiana (Apocynaceae). Bot J Linn Soc 127:207–223Google Scholar
  59. Tozzi AMGA, Agostini K, Sazima M (2005) A new species of Mucuna Adans. (Leguminosae, Papilionoideae, Phaseoleae) from southeastern Brazil, with a key to Brazilian species. Taxon 54:451–455CrossRefGoogle Scholar
  60. Van Wyk BE (1993) Nectar sugar composition in southern African Papilionoideae (Fabaceae). Biochem Syst Ecol 21:271–277CrossRefGoogle Scholar
  61. Voigt CC, Speakman JR (2007) Nectar-feeding bats fuel their high metabolism directly with exogenous carbohydrates. Funct Ecol 21:913–921CrossRefGoogle Scholar
  62. Von Helversen O (1993) Adaptations of flowers to the pollination by Glossophagine bats. In: Barthlott W (ed) Plant–animal interactions in tropical environments. Museum Alexander Koenig, Bonn, pp 41–59Google Scholar
  63. Von Helversen D, von Helversen O (2003) Object recognition by echolocation: a nectar-feeding bat exploiting the flowers of a rain forest vine. J Com Phys A 189:327–336Google Scholar
  64. Willson MF (1983) Plant reproductive ecology. John Wiley and Sons, New YorkGoogle Scholar
  65. Winter Y, von Helversen O (2001) Bats as pollinators: foraging energetics and floral adaptations. In: Chittka L, Thomson JD (eds) Cognitive ecology of pollination. Cambridge University Press, Cambridge, pp 148–170CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Kayna Agostini
    • 1
    • 4
    Email author
  • Marlies Sazima
    • 2
  • Leonardo Galetto
    • 3
  1. 1.Pós-Graduação em Biologia Vegetal, Instituto de Biologia, Caixa Postal 6109Universidade Estadual de CampinasCampinasBrazil
  2. 2.Departamento de Biologia Vegetal, Instituto de Biologia, Caixa Postal 6109Universidade Estadual de CampinasCampinasBrazil
  3. 3.Instituto Multidisciplinario de Biología Vegetal (UNC-CONICET)Casilla de Correo 495CórdobaArgentina
  4. 4.Universidade Metodista de PiracicabaPiracicabaBrazil

Personalised recommendations