Skip to main content
Log in

Cerumen of Australian stingless bees (Tetragonula carbonaria): gas chromatography-mass spectrometry fingerprints and potential anti-inflammatory properties

  • Original Paper
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

Cerumen, or propolis, is a mixture of plant resins enriched with bee secretions. In Australia, stingless bees are important pollinators that use cerumen for nest construction and possibly for colony’s health. While extensive research attests to the therapeutic properties of honeybee (Apis mellifera) propolis, the biological and medicinal properties of Australian stingless bee cerumen are largely unknown. In this study, the chemical and biological properties of polar extracts of cerumen from Tetragonula carbonaria in South East Queensland, Australia were investigated using gas chromatography-mass spectrometry (GC-MS) analyses and in vitro 5-lipoxygenase (5-LOX) cell-free assays. Extracts were tested against comparative (commercial tincture of A. mellifera propolis) and positive controls (Trolox and gallic acid). Distinct GC-MS fingerprints of a mixed diterpenic profile typical of native bee cerumen were obtained with pimaric acid (6.31 ± 0.97%, w/w), isopimaric acid (12.23 ± 3.03%, w/w), and gallic acid (5.79 ± 0.81%, w/w) tentatively identified as useful chemical markers. Characteristic flavonoids and prenylated phenolics found in honeybee propolis were absent. Cerumen extracts from T. carbonaria inhibited activity of 5-LOX, an enzyme known to catalyse production of proinflammatory mediators (IC50 19.97 ± 2.67 μg/ml, mean ± SEM, n = 4). Extracts had similar potency to Trolox (IC50 12.78 ± 1.82 μg/ml), but were less potent than honeybee propolis (IC50 5.90 ± 0.62 μg/ml) or gallic acid (IC50 5.62 ± 0.35 μg/ml, P < 0.001). These findings warrant further investigation of the ecological and medicinal properties of this stingless bee cerumen, which may herald a commercial potential for the Australian beekeeping industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akula US, Odhav B (2008) In vitro 5-lipoxygenase inhibition of polyphenolic antioxidants from undomesticated plants of South Africa. J Med Plants Res 2(9):207–212

    Google Scholar 

  • Anthon GE, Barrett DM (2001) Colorimetric method for the determination of lipoxygenase activity. J Agric Food Chem 49:32–37

    Article  PubMed  CAS  Google Scholar 

  • Bankova V (2009) Chemical diversity of propolis makes it a valuable source of new biologically active compounds. J ApiProd ApiMed Sci 1:23–28

    Article  Google Scholar 

  • Bankova VS, Popova M (2007) Propolis of stingless bees: a promising source of biologically active compounds. Pharm Rev 1:88–92

    CAS  Google Scholar 

  • Banskota AH, Tezuka Y, Kadota S (2001) Recent progress in pharmacological research of propolis. Phytother Res 15:561–571

    Article  PubMed  CAS  Google Scholar 

  • Cremer S, Sixt M (2009) Analogies in the evolution of individual and social immunity. Phil Trans R Soc B 364:129–142. doi:10.1098/rstb.2008.0166

    Article  PubMed  Google Scholar 

  • Creaser CS, Koupai-Abyazani MR, Stephenson GR (1991) Mass spectra of trimethylsilyl derivatives of naturally occurring flavonoid aglycones and chalcones. Org Mass Spectrom 26:157–160

    Article  CAS  Google Scholar 

  • Curini M, Epifano F, Genovese S, Menghini L, Ricci D, Fraternale D, Giamperi L, Bucchini A, Bellacchio E (2006) Lipoxygenase inhibitory activity of boropinic acid, active principle of boronia pinnata. Nat Prod Comm 1(12):1141–1145

    CAS  Google Scholar 

  • de Almeida EC, Menezes H (2002) Anti-inflammatory activity of propolis extracts: a review. J Venom Anim Toxins 8:191–212

    Google Scholar 

  • dos Santos CG, Megiolaro FL, Serrão JE, Blochtein B (2009) Morphology of the head salivary and intramandibular glands of the stingless bee Plebeia emerina (Hymenoptera: Meliponini) workers associated with propolis. Morphol Histol Fine Struct 102:137–143

    Google Scholar 

  • Farnesi AP, Aquino-Ferreira R, De Jong D, Bastos JK, Soares AE (2009) Effects of stingless bee and honey bee propolis on four species of bacteria. Gen Mol Res 8:635–640

    Article  CAS  Google Scholar 

  • Greenaway W, Scaysbrook T, Whatley FR (1987) The analysis of bud exudate of Populus × Euramericana, and of propolis, by gas chromatography-mass spectrometry. Proc R Soc Lond B Biol Sci 232:249–272

    Article  CAS  Google Scholar 

  • Heard TA (1999) The role of stingless bees in crop pollination. Ann Rev Entomol 44:183–206

    Article  CAS  Google Scholar 

  • Inoue HT, De Sousa EA, de Oliveira OR, Cunha Funari SR, Carelli Barreto LMR, Da Silva Dib AP (2007) Produção de própolis por diferentes métodos de coleta. Arch Latinoam Prod Anim 15:65–69

    Google Scholar 

  • Kaneko T, Baba N, Matsuo M (2001) Structure–activity relationship of antioxidants for inhibitors of linoleic acid hydroperoxide-induced toxicity in cultured human umbilical vein endothelial cells. Cytotechnology 35:43–55

    Article  PubMed  CAS  Google Scholar 

  • Kortenska VD, Velikova MP, Yanishlieva NV, Totzeva IR, Bankova VS, Marcucci MC (2002) Kinetics of lipid oxidation in the presence of cinnamic acid derivatives. Eur J Lipid Sci Technol 104:19–28

    Article  CAS  Google Scholar 

  • Kumaraswamy MV, Satish S (2008) Antioxidant and anti-lipoxygenase activity of Thespesia lampas Dalz & Gibs. Adv Biol Res 2:56–59

    Google Scholar 

  • Lehmberg L, Dworschak K, Blüthgen N (2008) Defensive behavior and chemical deterrence against ants in the stingless bee genus Trigona (Apidae, Meliponini). J Apicult Res 47:17–21

    Google Scholar 

  • Leonhardt SD, Blüthgen N (2009) A sticky affair: resin collection by Bornean stingless bees. Biotropica 41:730–736

    Article  Google Scholar 

  • Leonhardt SD, Blüthgen N, Schmitt T (2009) Smelling like resin: terpenoids account for species-specific cuticular profiles in Southeast-Asian stingless bees. Insect Soc 56:157–170

    Article  Google Scholar 

  • Leonhardt SD, Wallace HM, Schmitt T (2010a) The cuticular profiles of Australian stingless bees are shaped by resin of the eucalypt tree Corymbia torelliana. Austral Ecol (in press)

  • Leonhardt SD, Zeilhofer S, Blüthgen N, Schmitt T (2010b) Stingless bees use terpenes as olfactory cues to find resin sources. Chem Senses. doi:10.1093/chemse/bjq058

  • Markham KR, Mitchell KA, Wilkins AL, Daldy JA, Lu Y (1996) HPLC and GC-MS identification of the major organic constituents in New Zealand propolis. Phytochemistry 42(1):205–211

    Article  CAS  Google Scholar 

  • McLennan SV, Bonner J, Milne S, Lo L, Charlton A, Kurup S, Jia J, Yue DK, Twigg SM (2008) The anti-inflammatory agent propolis improves wound healing in a rodent model of experimental diabetes. Wound Repair Regen 16:706–713

    Article  PubMed  Google Scholar 

  • Milborrow BV, Kennedy JM, Dollin LJ (1987) Composition of wax made by the Australian stingless bee Trigona australis. Aust J Biol Sci 40:15–25

    CAS  Google Scholar 

  • Nunez CV, de Oliveira ML, Duarte Lima R, Diaz IEC, Collantes E, Sargentini EJ, Pereira OLJ, Araújo LM (2008) Chemical analyses confirm a rare case of seed dispersal by bees. Apidologie 39:618–626

    Article  CAS  Google Scholar 

  • Oddo LP, Heard TA, Rodriguez-Malaver A, Perez RA, Fernandez-Muino M, Sancho MT, Sesta G, Lusco L, Vit P (2008) Composition and antioxidant activity of Trigona carbonaria honey from Australia. J Med Food 11:789–794

    Article  PubMed  CAS  Google Scholar 

  • Patricio EF, Cruz-Lopez L, Maile R, Tentschert J, Jones GR, Morgan ED (2002) The propolis of stingless bees: terpenes from the tibia of three Frieseomelitta species. J Insect Physiol 48:249–254

    Article  PubMed  CAS  Google Scholar 

  • Pereira AS, Nascimento EA, Aquino Neto FR (2002) Lupeol alkanoates in Brazilian propolis. Z Naturforsch C 57:721–726

    PubMed  CAS  Google Scholar 

  • Pereira AS, Bicalho B, de Aquino Neto FR (2003) Comparison of propolis from Apis mellifera and Tetragonisca angustula. Apidologie 34:291–298. doi:10.1051/apido:2003023

    Article  Google Scholar 

  • Pferschy-Wenzig EM, Kunert O, Presser A, Bauer R (2008) In vitro anti-inflammatory activity of larch (Larix decidua L.) sawdust. J Agric Food Chem 56(24):11688–11693

    Article  PubMed  CAS  Google Scholar 

  • Piccinelli AL, Campone L, Dal Piaz F, Cuesta-Rubio O, Rastrelli L (2009) Fragmentation pathways of polycyclic polyisoprenylated benzophenones and degradation profile of nemorosone by multiple-stage tandem mass spectrometry. J Am Soc Mass Spectrom 20:1688–1698

    Article  PubMed  CAS  Google Scholar 

  • Polya GM (2003) Biochemical targets of plant bioactive compounds. A pharmacological reference guide to sites of action and biological effects. CRC, Boca Raton

    Book  Google Scholar 

  • Rankin JA (2004) Biological mediators of acute inflammation. AACN Clin Issues 15:317

    Google Scholar 

  • Roubik DW (2006) Stingless bee nesting biology. Apidologie 37:124–143

    Article  Google Scholar 

  • Sawaya AC, Tomazela DM, Cunha IB, Bankova VS, Marcucci MC, Custodio AR, Eberlin MN (2004) Electrospray ionization mass spectrometry fingerprinting of propolis. Analyst 129:739–744

    Article  PubMed  CAS  Google Scholar 

  • Simone M, Evans JD, Spivak M (2009) Resin collection and social immunity in honey bees. Evolution 11:3016–3022

    Article  Google Scholar 

  • Simone-Finstrom M, Spivak M (2010) Propolis and bee health: the natural history and significance of resin use by honey bees. Apidologie 41:295–311. doi:10.1051/apido/2010016

    Article  Google Scholar 

  • Stow A, Briscoe D, Gillings M, Holley M, Smith S, Leys R, Silberbauer T, Turnbull C, Beattie A (2007) Antimicrobial defences increase with sociality in bees. Biol Lett 3:423–424

    Article  Google Scholar 

  • Sud’ina GF, Mirzoeva OK, Pushkareva MA, Korshunova GA, Sumbatyan NV, Varfolomeev SD (1993) Caffeic acid phenethyl ester as a lipoxygenase inhibitor with antioxidant properties. FEBS Lett 329:21–24

    Article  PubMed  Google Scholar 

  • Teixeira AC, Message D, Negri G, Salatino A (2006) Bauer-7-en-3â-yl acetate: a major constituent of unusual samples of Brazilian propolis. Quimica Nova 29:245–246

    CAS  Google Scholar 

  • Temaru E, Shimura S, Amano K, Karasawa T (2007) Antibacterial activity of honey from stingless honeybees (Hymenoptera; Apidae; Meliponinae). Pol J Microbiol 56:281–285

    PubMed  Google Scholar 

  • Ulusu NN, Ercil D, Sakar MK, Tezcan EF (2002) Abietic acid inhibits lipoxygenase activity. Phytother Res 16:88–90

    Article  PubMed  CAS  Google Scholar 

  • Urzúa A, Rezende MC, Mascayano C, Vásquez L (2008) A structure–activity study of antibacterial diterpenoids. Molecules 13:882–891

    Article  PubMed  Google Scholar 

  • Velikova M, Bankova V, Marcucci MC, Tsvetkova I, Kujumgiev A (2000a) Chemical composition and biological activity of propolis from Brazilian Meliponinae. Z Naturforsch C 55:785–789

    PubMed  CAS  Google Scholar 

  • Velikova M, Bankova V, Tsvetkova I, Kujumgiev A, Marcucci MC (2000b) Antibacterial ent-kaurene from Brazilian propolis of native stingless bees. Fitoterapia 71(6):693–696

    Article  PubMed  CAS  Google Scholar 

  • Wallace HM, Trueman SJ (1995) Dispersal of Eucalyptus torelliana seeds by the resin-collecting stingless bee, Trigona carbonaria. Oecologia 104:12–16. doi:10.1007/BF00365556

    Article  Google Scholar 

  • Wallace HM, Lee DJ (2010) Resin-foraging by colonies of Trigona sapiens and T. hockingsi (Hymenoptera: Apidae, Meliponini) and consequent seed dispersal of Corymbia torelliana (Myrtaceae). Apidologie 41:428–435. doi:10.1051/apido/20079074

    Article  Google Scholar 

  • Wallace HM, Howell GM, Lee DJ (2008) Standard yet unusual mechanisms of long-distance dispersal: seed dispersal of Corymbia torelliana by bees. Divers Distrib 14:87–94

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the industry partner, Comvita New Zealand, for funding this project through the FRST bursary (NZ) and to Dr. Tim Heard for donating the cerumen samples from local stingless bees. The authors acknowledge Dr. Leigh Findlay for editorial assistance with the manuscript.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flavia Carmelina Massaro.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 39 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Massaro, F.C., Brooks, P.R., Wallace, H.M. et al. Cerumen of Australian stingless bees (Tetragonula carbonaria): gas chromatography-mass spectrometry fingerprints and potential anti-inflammatory properties. Naturwissenschaften 98, 329–337 (2011). https://doi.org/10.1007/s00114-011-0770-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-011-0770-7

Keywords

Navigation