Skip to main content

Reconstructing the anatomy of the 42-million-year-old fossil †Mengea tertiaria (Insecta, Strepsiptera)

Abstract

Fossilization in amber is unique in preserving specimens with microscopic fidelity; however, arthropod inclusions are rarely examined beyond the exoskeleton as this requires destructive sampling when traditional techniques are used. We report the first complete, digital 3D, non-destructive reconstruction of the anatomy of an insect fossil, a specimen of †Mengea tertiaria embedded in a 42-Ma Baltic amber. This was made possible using Synchrotron μ-CT. The species belongs to the stem group of the phylogenetically enigmatic and extremely specialized Strepsiptera. Most internal structures of the fossil are preserved, but small parts of the lumen had decayed due to incomplete infiltration of the resin. Data on internal organs provided additional information for resolving phylogenetic relationships. A sister group relationship between †Mengea and all extant lineages of the group was confirmed with characters previously not accessible. The newly gained information also yielded some insights in the biology of †Mengea and the early evolutionary history of Strepsiptera. The technique has a tremendous potential for a more accurate interpretation of diverse fossil arthropods preserved in ambers from 130 Ma to the present.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Azar D (1997) A new method for extracting plant and insect fossils from Lebanese amber. Palaeontology 40:1027–1029

    Google Scholar 

  2. Beckmann F (2008) Neutron and synchrotron-radiation based imaging for applications in materials science—from macro- to nanotomography. In: Reimers W, Pyzalla AR, Schreyer A, Clemens H (eds) Neutrons and synchrotron radiation in engineering materials science. Wiley VCH Verlag, Weinheim, pp 287–307

    Chapter  Google Scholar 

  3. Beckmann F, Donath T, Fischer J, Dose T, Lippmann T, Lottermoser L, Martins RV, Schreyer A (2006) New developments for synchrotron-radiation-based microtomography at DESY. Proc SPIE 6318:631810–631811

    Article  Google Scholar 

  4. Beckmann F, Herzen J, Haibel A, Müller B, Schreyer A (2008) High density resolution in synchrotron-radiation-based attenuation-contrast microtomography. Proc SPIE 7078:70781D

    Article  Google Scholar 

  5. Beutel RG, Pohl H (2006) Head structures of males of Strepsiptera (Hexapoda) with emphasis on basal splitting events within the order. J Morphol 267:536–554

    Article  PubMed  Google Scholar 

  6. Beutel RG, Pohl H, Hünefeld F (2005) Strepsipteran brains and effects of miniaturization (Insecta). Arthropod Struct Dev 34:301–313

    Article  Google Scholar 

  7. Bravo F, Pohl H, Silva-Neto A, Beutel RG (2009) Bahiaxenidae, a “living fossil” and a new family of Strepsiptera (Hexapoda) discovered in Brazil. Cladistics 25:614–623

    Article  Google Scholar 

  8. Grabert B (1953) Bau der Geschlechtsorgane und Kopulation beim Stylops-Männchen (Strepsiptera, Insecta). Diploma thesis, Zoologisches Institut, Freie Universität Berlin

  9. Grimaldi D (2003) Amber: window to the past. Harry N. Abrams, Inc., New York

    Google Scholar 

  10. Grimaldi D, Engel MS (2005) Evolution of the Insects. Cambridge University Press, New York

    Google Scholar 

  11. Grimaldi D, Bonwich E, Delannoy M, Doberstein S (1994) Electron microscopic studies of mummified tissues in amber fossils. Am Mus Nov 3097:1–31

    Google Scholar 

  12. Grimaldi D, Kathirithamby J, Schawaroch V (2005) Strepsiptera and triungula in cretaceous amber. Insect Syst Evol 36:1–20

    Google Scholar 

  13. Heethoff M, Helfen L, Norton RA (2009) Description of Neoliodes dominicus n.sp. (Acari, Oribatida) from Dominican amber, aided by synchrotron X-ray microtomography. J Paleontol 83:153–159

    Article  Google Scholar 

  14. Hennig W (1965) Die Acalyptratae des baltischen Bernsteins und ihre Bedeutung für die Erforschung der phylogenetischen Entwicklung dieser Dipteren-Gruppe. Stuttgarter Beitr Naturk 145:1–215

    Google Scholar 

  15. Henwood A (1992) Exceptional preservation of dipteran flight muscle and the taphonomy of insects in amber. Palaios 7:203–212

    Article  Google Scholar 

  16. Hünefeld F, Beutel RG (2005) The sperm pumps of Strepsiptera and Antliophora (Hexapoda). J Zool Syst Evol Res 43:297–306

    Article  Google Scholar 

  17. Kohring R (1998) REM-Untersuchungen an harzkonservierten Arthropoden. Entomol Gen 23:95–106

    Google Scholar 

  18. Kosmowska-Ceranowicz B (1996) Bernstein—die Lagerstätte und ihre Entstehung. In: Ganzelewski M, Slotta R (eds) Bernstein – Tränen der Götter. VGE, Bochum, pp 299–310

    Google Scholar 

  19. Kristensen NP (1991) Phylogeny of extant hexapods. In: Naumann ID, Carne PB, Lawrence JF, Nielsen ES, Spradberry JP, Taylor RW, Whitten MJ, Littlejohn MJ (eds) The insects of Australia: a textbook for students and research workers, 2nd edn. CSIRO, Melbourne Univ. Press, Melbourne, pp 125–140

    Google Scholar 

  20. Lak M, Neraudeau D, Nel A, Cloetens P, Perrichot V, Tafforeau P (2008) Phase contrast X-ray synchrotron imaging: opening access to fossil inclusions in opaque amber. Microsc Microanat 14:251–259

    CAS  Google Scholar 

  21. Larsson SG (1978) Baltic amber—a palaeobiological study. Entomonograph 1:1–192

    Google Scholar 

  22. Lauterbach G (1954) Begattung und Larvengeburt bei den Strepsipteren. Zugleich ein Beitrag zur Anatomie der Stylops-Weibchen. Z Parasitenkunde 16:255–297

    CAS  Article  Google Scholar 

  23. Odin GS, Luterbacher HP (1992) The age of the Paleogene stage boundaries. N Jb Geol Paläont, Abh 186:21–48

    Google Scholar 

  24. Pohl H, Beutel RG (2004) Fine structure of adhesive devices of Strepsiptera (Insecta). Arthr Struct Dev 33:31–43

    Article  Google Scholar 

  25. Pohl H, Beutel RG (2005) The phylogeny of Strepsiptera (Hexapoda). Cladistics 21:328–374

    Article  Google Scholar 

  26. Pohl H, Beutel RG (2008) The evolution of Strepsiptera (Hexapoda). Zoology 111:318–338

    Article  PubMed  Google Scholar 

  27. Pohl H, Beutel RG, Kinzelbach R (2005) Protoxenidae fam. nov. (Insecta, Strepsiptera) from Baltic amber—a ‘missing link’ in strepsipteran phylogeny. Zool Scripta 34:57–69

    Article  Google Scholar 

  28. Poinar GO (1992) Life in amber. Stanford Univ Press, Stanford

    Google Scholar 

  29. Ritzkowski S (1997) K-Ar Altersbestimmung der bernsteinführenden Sedimente des Samlandes (Paläogen, Bezirk Kaliningrad). Metalla 66:19–23

    Google Scholar 

  30. Schlee D (1970) Insektenfossilien aus der unteren Kreide I. Verwandtschaftsforschung an fossilen und rezenten Aleyrodina (Insecta, Hemiptera). Stuttgarter Beitr Naturk 213:1–72

    Google Scholar 

  31. Schlee D, Glöckner W (1978) Bernstein—Bernsteine und Bernstein-Fossilien. Stuttgarter Beitr Naturk 8:1–72

    Google Scholar 

  32. Silvestri F (1941) Studi sugli “Strepsiptera” (lnsecta). I. Ridescrizione e ciclo dell’Eoxenos Laboulbenei Peyerimoff. Boll Lab Zool Gen Agric Fac Agric Portici 31:311–341

    Google Scholar 

  33. Silvestri F (1943) Studi sugli “Strepsiptera” (lnsecta). III. Descrizione e biologia di 6 specie italiane di Mengenilla. Boll Lab Zool Gen Agric Fac Agric Portici 32:197–282

    Google Scholar 

  34. Tafforeau P, Boistel R, Boller E, Bravin A, Brunet M, Chaimanee Y, Cloetens P, Feist M, Hoszowska J, Jaeger J-J, Kay RF, Lazzari V, Marivaux L, NEL A, Nemoz C, Thibault X, Vignaud P, Zabler S (2006) Applications of X-ray synchrotron microtomography for non-destructive 3D studies of paleontological specimens. Appl Phys A 83:195–202

    CAS  Article  Google Scholar 

  35. Thurner P, Beckmann F, Müller B (2004) An optimization procedure for spatial and density resolution in hard X-ray micro-computed tomography. Nucl Instrum Meth B 225:599–603

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We are very grateful to Prof. Dr. Ragnar Kinzelbach, University of Rostock, who kindly donated the †M. tertiaria specimen used in this study to H. P. Thanks is also due to Julia Herzen, GKSS, for support at the beamline. We thank Carina Dressler, Dr. Frank Friedrich, and Monica Koeth for their help in the collection of synchroton data. The financial support by the DFG (BE 1789/4-1) and the support of the DESY facilities (project number, I-20080104) are also gratefully acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hans Pohl.

Additional information

Communicated by Robert Reisz

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pohl, H., Wipfler, B., Grimaldi, D. et al. Reconstructing the anatomy of the 42-million-year-old fossil †Mengea tertiaria (Insecta, Strepsiptera). Naturwissenschaften 97, 855–859 (2010). https://doi.org/10.1007/s00114-010-0703-x

Download citation

Keywords

  • Amber
  • Internal anatomy
  • SRμ-CT
  • 3-dimensional reconstruction
  • Arthropoda
  • Strepsiptera