Skip to main content

A possible in situ 3H and 3He source in Earth’s interior: an alternative explanation of origin of 3He in deep Earth

Abstract

Origin of 3He in the Earth is a mystery. Lacking a production mechanism, scientists assume 3He was trapped in the Earth, when the Earth was formed. In contrast to this assumption, we have found 3He and 3H concentrations in excess of the atmospheric values in the deep waters of the volcanic Lakes Pavin (France), Laacher (Germany) and Nemrut (Turkey). This paper reports the result of finding 3H in these three volcanic lakes that appear to originate from the mantle. Because 3H has a half-life of 12.3 years, this 3H and the resulting 3He must have formed recently in the mantle and not be part of a primordial reservoir. The nuclear reactions that generate tritium might be a source of “missing” energy in the interior of the Earth.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Aeschbach-Hertig W, Kipfer R, Hofer M, Imboden DM, Wieler R, Signer P (1996) Quantification of gas fluxes from the subcontinental mantle: the example of Laacher See, a maar lake in Germany. Geochim Cosmochim Acta 60:31–41

    Article  CAS  Google Scholar 

  • Aeschbach-Hertig W, Hofer M, Kipfer R, Imboden DM, Wieler R (1999) Accumulation of mantle gasses in a permanently stratified volcanic lake (Lac Pavin, France). Geochim Cosmochim Acta 63:3357–3372

    Article  CAS  Google Scholar 

  • Aeschbach-Hertig W, Hofer M, Kipfr R, Imbodem DM (2002) The physical structure and dynamics of a deep, meromictic crater lake (Lac Pavin, France). Hydrobiologia 487:111–136

    Article  CAS  Google Scholar 

  • Albarède F (2008) Rogue mantle He and Ne. Science 319:943–945

    Article  PubMed  CAS  Google Scholar 

  • Allègre CJ, Staudacher T, Sarda P, Kurz M (1983) Constraints on evolution of the Earth's mantle from rare gas systematics. Nature 303:762–766

    Article  Google Scholar 

  • Anderson DL (1993) Helium-3 from the mantle: primordial signal of cosmic dust. Science 261:170–178

    Article  CAS  PubMed  Google Scholar 

  • Andrews JN, Kay RLF (1982) Natural production of tritium in permeable rocks. Nature 298:361–363

    Article  CAS  Google Scholar 

  • Clark K, Hudson GB (2001) Quantifying the flux of hydrothermal fluids into Mono Lake by use of helium isotopes. Limnol Oceanogr 46:189–196

    CAS  Article  Google Scholar 

  • Clarke WB, Beg MA, Craig H (1969) Excess 3He in the sea: evidence for terrestrial primordial helium. Earth Planet Sci Lett 6:213–220

    Article  CAS  Google Scholar 

  • Czerski K, Huke A, Heide P, Ruprecht G (2004) The 2H(d, p)3H reaction in mettic media at very low energies. Europhys Lett 68:363–369

    Article  CAS  Google Scholar 

  • Eugene VS (1991) Examination of the possibility of cold nuclear occurring within the Earth’s mantle. Proceed. Anomal. Nuclear Effects in Deuterium/Solid Systems, AIP Conf. Proceed. 228, Amer Inst Phys NY, pp 646–649

  • Gerling EK, Mamyrin BA, Tolstikhin LN, Yakovleva SS (1971) Helium isotope composition in some rock. Geochim Int 8:755–761

    Google Scholar 

  • Goff F, McMurtry GM (2000) Tritium and stable isotopes of magmatic water. J Volcanol Geoth Res 97:347–396

    Article  CAS  Google Scholar 

  • Graham DW (2002) Noble gas isotope geochemistry of mid-ocean ridge and Ocean Island Basalts: characterization of mantle source reservoirs. In: Porcelli D, Ballentine CJ, Wieler R (eds) Noble gases in geochemistry and cosmochemistry. Geochemical Society & American Society of America, Washington, pp 247–315

    Google Scholar 

  • Herndon JM (2003) Nuclear georeactor origin of oceanic basalt 3He/4He evidence and implication. Proc Natl Acad Sci USA 100:3047–3050

    Article  CAS  PubMed  Google Scholar 

  • Hofer M, Peeters F (2002) Aeschbach-Herting, W, Rapid deep-water renewal in Lake Issyk-Kul (Kyrgyzstan) indicated by transient tracers. Limmol Oceanogy 47:1210–1216

    Google Scholar 

  • Hohmann R, Hofer M, Peeters F, Imboden DM, Baur H, Shimaraev MN (1998) Distribution of helium and thitium in Lake Baikal. J Phys Res 103(C6):12, 823-12, 838

    Google Scholar 

  • Igarashi G, Ozima M, Ishibashi J, Gamo T, Sakai H, Nojiri Y, Kawai T (1992) Mantle helium flux from the bottom of Lake Mashu, Japan. Earth Planet Sci Lett 108:11–18

    Article  CAS  Google Scholar 

  • Jackson MJ, Mark DK, Stanley RH (2009) Helium and neon isotopes in phenocrysts from Samoan lavas: Evidence for heterogeneity in the terrestrial high 3He/4He mantle. Earth Planet Sci Lett 287:519–528

    Article  CAS  Google Scholar 

  • Jiang S-S, Li J-H, Wang J-Q, He M, Wu S-Y, Zhang H-T, Yao S-H, Zhao Y-G (2009) Measurement of anomalous nuclear reaction in deuterium-loaded metal. Chinese Physics B 18:1428–1435

    Article  CAS  Google Scholar 

  • Jones SE, Eilsworth JE (2003) Geo-fusion and cold nucleosynthesis. 10th International Conference on Cold Fusion, Cambridge, MA: LENR-CANR.org

  • Jones SE, Ellsworth JE (2005) Cold (metal-enhanced) fusion, geo-fusion, and cold nucleosynthesis. Condensed Matter Nuclear Science, World Scientific, London, p 617

    Google Scholar 

  • Jones SE, Palmer EP, Czirr JB, Decker DL, Jensen GL, Thorne JM, Taylor SF, Rafelski J (1989) Observation of cold nuclear fusion in condensed mater. Nature 338:737–740

    Article  CAS  Google Scholar 

  • Kim YE (2009) Theory of Bose-Einstein condensation mechanism for deuteron-induced nuclear reactions in micro/nano-scale metal grains and particle. Naturwissenschaften 96:803–811

    Article  CAS  PubMed  Google Scholar 

  • Kipfer R, Acschbach-Hertig W, Baur H, Hofer M, Imboden DM (1994) Injection of mantle type helium into Lake Van (Turkey): the clue for quantifying deep water renewal. Earth Planet Sci Lett 125:357–370

    Article  CAS  Google Scholar 

  • Krylov AY, Mamylin BA, Khabarin LA, Mazina TI, Silin YI (1974) Helium isotopes in ocean floor bedrock. Geokhimiya 8:1220–1225

    Google Scholar 

  • Kurz DM (1986) Cosmogenic helium in a terrestrial igneous rock. Nature 320:435–439

    Article  CAS  Google Scholar 

  • Kurz MD, Colodner D, Yrull TW, Moore RB, O’Brien K (1990) Cosmic ray exposure dating with in situ produced cosmogenic 3He: results from young Hawaiian lava flows. Earth Planet Sci Lett 93:177–189

    Article  Google Scholar 

  • Mamyrin BA, Tolstikhin LM (1984) Helium isotope in nature. Amsterdam, Oxford

    Google Scholar 

  • Maurette M (1976) Fossil reactor. Ann Rev Nucl Sci 26:319–350

    Article  CAS  Google Scholar 

  • McHargue LR, Damon PE, Swindle TD (1991) Cold-nuclear fusion within the core of the Earth? Proceed. Anomal. Nuclear Effects in Deuterium/Solid Systems, AIP Conf. Proceed. 228, Amer Inst Phys NY pp 611-615

  • O’Nions RK, Oxburgh ER (1983) Heat and helium in the Earth. Nature 303:429–431

    Article  Google Scholar 

  • Olive P, Boulègue J (2004) Biogeochemical study of meromictic lake: Pavin lake, France. Géomorphologie 4:305–316

    Article  Google Scholar 

  • Picker HS (1980) On the fusion of hydrogen isotopes in ordinary molecules. Nukleonica 25:1491–1495

    CAS  Google Scholar 

  • Porcelli D, Halliday AN (2001) The core as a possible source of mantle helium. Earth Planet Sci Lett 192:45–56

    Article  CAS  Google Scholar 

  • Quick JE, Hinkley TK, Reimer GM, Hodge CE (1991) Tritium concentration in the active Pu’uO’o crater, Kilauea volcano, Hawaii: implications for cold fusion in the Earth’s interior. Phys Earth Planet Inter 69:132–137

    Article  CAS  Google Scholar 

  • Sano Y, Kusakabe M, Hirabayashi J, Nojiri Y, Shinohara H, Njine T, Tayileke G (1990) Helium and carbon fluxes in Lake Nyos, Cameroon: constraint on next gas burst. Earth Planet Sci Lett 99:303–314

    Article  CAS  Google Scholar 

  • Schwinger J (1990) Cold fusion: a hypothesis. Z Naturforsch 45A:756

    Google Scholar 

  • Storms E (2007) The science of low energy nuclear reaction, World Scientific Publishing Company

  • Stuart FM, Lass-Evans S, Fitton JG, Ellam RM (2003) High 3He/4He ratios in picritic basalts from Baffin Island and the role of a mixed reservoir in mantle plumes. Nature 424:87–89

    Article  CAS  Google Scholar 

  • Williams Q, Hemley RJ (2001) Hydrogen in the deep Earth. Annu Rev Earth Planet Sci 29:365–418

    Article  CAS  Google Scholar 

  • Wüest A, Aeschbach-Hertig W, Baur H, Hofer M, Kipfer R (1992) Density structure and tritium-helium age of deep hypolimnetic water in the Northern basin of Lake Lugano. Aquat Sci 54:205–218

    Article  Google Scholar 

  • Xie S, Paul J, Tackley PJ (2004) Evolution of helium and argon isotopes in a convecting mantle. Phys Earth Planet Inter 146:417–439

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by President Foundation of the China Institute of Atomic Energy (No. YZ-0704). We thank Dr. Edmund Storms for his interest in this work, his valuable comments and many helps in completing this paper. We thank Professor Pinxian Wang for his helpful comments. We also express our thanks to the three reviewers for critical reviews and helpful comments on improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Songsheng Jiang.

Additional information

Communicated by Edmund Storms

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jiang, S., Liu, J. & He, M. A possible in situ 3H and 3He source in Earth’s interior: an alternative explanation of origin of 3He in deep Earth. Naturwissenschaften 97, 655–662 (2010). https://doi.org/10.1007/s00114-010-0681-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-010-0681-z

Keywords

  • 3H and 3He
  • Nuclear reaction
  • 3He in Earth
  • Volcanic lakes