Skip to main content

New postcrania of Deccanolestes from the Late Cretaceous of India and their bearing on the evolutionary and biogeographic history of euarchontan mammals

Abstract

Extant species of the supraordinal mammal clade Euarchonta belong to the orders Primates, Scandentia, or Dermoptera. The fossil record of euarchontans suggests that they underwent their initial radiation during the Paleocene (65–55 million years ago) in North America, Eurasia, and Africa. The time and place of origin is poorly resolved due to lack of definitive fossils of euarchontan stem taxa. We describe a fragmentary humerus and two fragmentary ulnae from the latest Cretaceous of India that bear significantly on this issue. The fossils are tentatively referred to Deccanolestes cf. hislopi due to their small size and the fact that Deccanolestes is the only eutherian dental taxon to have been recovered from the same locality. The new fossils are used to evaluate the existing behavioral hypothesis that Deccanolestes was arboreal, and the competing phylogenetic hypotheses that Deccanolestes is a stem eutherian versus a stem euarchontan. The humerus resembles those of euarchontans in possessing a laterally keeled ulnar trochlea, a distinct zona conoidea, and a spherical capitulum. These features also suggest an arboreal lifestyle. The ulnar morphology is consistent with that of the humerus in reflecting an arboreal/scansorial animal. Detailed quantitative comparisons indicate that, despite morphological correlates to euarchontan-like arboreality, the humerus of Deccanolestes is morphologically intermediate between those of Cretaceous “condylarthran” mammals and definitive Cenozoic euarchontans. Additionally, humeri attributed to adapisoriculids are morphologically intermediate between those of Deccanolestes and definitive euarchontans. If adapisoriculids are euarchontans, as recently proposed, our results suggest that Deccanolestes is more basal. The tentative identification of Deccanolestes as a basal stem euarchontan suggests that (1) Placentalia began to diversify and Euarchonta originated before the Cretaceous–Tertiary boundary and (2) the Indian subcontinent, Eurasia, and Africa are more likely places of origin for Euarchonta than is North America.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Aitchison JC, Ali JR, Davis AM (2007) When and where did India and Asia collide? J Geophys Res 112:B05423. doi:10.1029/2006JB004706

    Article  Google Scholar 

  • Ali JR, Aitchison JC (2008) Gondwana to Asia: plate tectonics, paleogeography and the biological connectivity of the Indian sub-continent from the Middle Jurassic through latest Eocene (166–35 Ma). Earth-Sci Rev 88:145–166

    Article  Google Scholar 

  • Allègre CJ, Birck JL, Capmas F, Courtillot V (1999) Age of the Deccan traps using 187Re-187Os systematics. Earth Planet Sci Lett 170:197–204

    Article  Google Scholar 

  • Bhatia SB, Riveline J, Rana RS (1990) Charophytes from the Deccan intertrappean beds near Rangapur, Andhra Pradesh, India. Palaeobotanist 37:316–323

    Google Scholar 

  • Bloch JI, Silcox MT, Boyer DM, Sargis EJ (2007) New Paleocene skeletons and the relationship of plesiadapiforms to crown-clade primates. Proc Natl Acad Sci 104:1159–1164

    Article  CAS  PubMed  Google Scholar 

  • Bossuyt F, Milinkovitch MC (2001) Amphibians as indicators of Early Tertiary “Out-of-India” dispersal of vertebrates. Science 292:93–95

    Article  CAS  PubMed  Google Scholar 

  • Clemens WA (1974) Purgatorius, an early paromomyid primate (Mammalia). Science 184:903–905

    Article  CAS  PubMed  Google Scholar 

  • Clyde WC, Khan IH, Gingerich PD (2003) Stratigraphic response and mammalian dispersal during initial India–Asia collision: evidence from the Ghazij Formation, Baluchistan, Pakistan. Geology 31:1097–1100

    Article  Google Scholar 

  • Conti E, Eriksson T, Schonenberger J, Systsma KJ, Baum DA (2002) Early Tertiary out-of-India dispersal of Crypteroniaceae: evidence from phylogeny and molecular dating. Evolution 56:1931–1942

    PubMed  Google Scholar 

  • Cooper A, Lalueza-Fox C, Anderson S, Rambaut A, Austin J, Ward R (2001) Complete mitochondrial genome sequences of two extinct moas clarify ratite evolution. Nature 409:704–707

    Article  CAS  PubMed  Google Scholar 

  • Dutt NVBS (1975) Deccan Traps of the western part of Hyderabad District, Andhra Pradesh. Rec Geol Surv India 106:126–141

    Google Scholar 

  • Erickson PGP, Christidis L, Cooper A, Irestedt M, Jackson J, Johansson US, Norman JA (2002) A Gondwanan origin of passerine birds supported by DNA sequences of the endemic New Zealand wrens. Proc R Soc Lond B 269:235–241

    Article  Google Scholar 

  • Garzanti E (2008) Comment on “When and where did India and Asia collide?” by Aitchison JC, Ali JR, and Davis AM. J Geophys Res 113:B04411. doi:10.1029/2007JB005276

    Article  Google Scholar 

  • Gheerbrant E (1988) Afrodon chleuhi nov. gen., nov. sp., ‘insectivore’ (Mammalia, Eutheria) lipotyphlé (?) du Paléocène marocain: données préliminaires. C R Acad Sci-Paris, Ser II 307:1303–1309

    Google Scholar 

  • Gheerbrant E (1995) Les mammifères Paléocenes du Bassin d’Ouarzazate (Maroc). III. Adapisoriculidae et autres mammifères (Carnivora,? Creodonta, Condylarthra,? Ungulata et incertae sedis). Palaeontogr Abt A 237:39–132

    Google Scholar 

  • Gheerbrant E, Rage J-C (2006) Paleobiogeography of Africa: how distinct from Gondwana and Laurasia? Palaeogeogr Palaeoclimatol Palaeoecol 241:224–246

    Article  Google Scholar 

  • Gheerbrant E, Russell DE (1989) Presence of the genus Afrodon (Mammalia, Lipotyphla (ß), Adapisoriculidae) in Europe: new data for the problem of trans-Tethyan relations between Africa and Europe around the K/T boundary. Palaeogeogr Palaeoclimatol Palaeoecol 76:1–15

    Article  Google Scholar 

  • Gheerbrant E, Russell DE (1991) Bustylus cernaysi nov. gen., nov. sp., nouvel Adapisoriculidé (Mammalia, Eutheria) Paléocène d’Europe. Geobios 24:467–481

    Article  Google Scholar 

  • Gheerbrant E, Sudre J, Sen S, Abrial C, Marandat B, Sigé B, Vianey-Liaud M (1998) Nouvelles données sur les mammiferes du Thanétien et de l’Ypresien du Bassin d’Ouarzazate (Maroc) et leur contexte stratigraphique. Palaeovertebrata 27:155–202

    Google Scholar 

  • Gingerich PD (1976) Cranial anatomy and evolution of Early Tertiary Plesiadapidae (Mammalia, Primates). Univ Mich Pap Paleontol 15:1–141

    Google Scholar 

  • Godinot M (1994) Early North African primates and their significance for the origin of Simiiformes (=Anthropoidea). In: Fleagle JG, Kay RF (eds) Anthropoid origins. Plenum, New York, pp 235–295

    Google Scholar 

  • Godinot M, Prasad GVR (1994) Discovery of Cretaceous arboreal eutherians. Naturwissenschaften 81:79–81

    Article  CAS  Google Scholar 

  • Gower DJ, Kupfer A, Oommen OV, Himstedt W, Nussbaum RA, Loader SP, Presswell B, Müller H, Krishna SB, Boistel R, Wilkinson M (2002) A molecular phylogeny of ichthyophiid caecilians (Amphibia: Gymnophiona: Ichthyophiidae): out of India or out of South East Asia? Proc R Soc Lond-Biol Sci 269:1563–1569

    Article  CAS  Google Scholar 

  • Hoffstetter R (1977) Phylogénie des primates: confrontation des résultats obtenus par les diverses voies d’approche du problème. Bull Mém Soc Anthropol Paris 4:327–346

    Article  Google Scholar 

  • Hooker JJ (2001) Tarsal of the extinct insectivoran family Nyctitheriidae (Mammalia): evidence for archontan relationships. Zool J Linn Soc 132:501–529

    Article  Google Scholar 

  • Horovitz I (2000) The tarsus of Ukhaatherium nessovi (Eutheria, Mammalia) from the Late Cretaceous of Mongolia: an appraisal of the evolution of the ankle in basal therians. J Vertebr Paleontol 20:547–560

    Article  Google Scholar 

  • Horovitz I (2003) Postcranial skeleton of Ukhaatherium nessovi (Eutheria, Mammalia) from the Late Cretaceous of Mongolia. J Vertebr Paleontol 23:857–868

    Article  Google Scholar 

  • Janečka JE, Miller W, Pringle TH, Wiens F, Zitzmann A, Helgen KM, Springer MS, Murphy WJ (2007) Molecular and genomic data identify the closest living relative of primates. Science 318:792–794

    Article  PubMed  Google Scholar 

  • Khosla A, Prasad GVR, Verma O, Jain AK, Sahni A (2004) Discovery of a micromammal-yielding Deccan intertrapean site near Kisalpuri, Dindori District, Madhya Pradesh. Curr Sci 87:380–383

    Google Scholar 

  • Krause DW, Jenkins FA Jr (1983) The postcranial skeleton of North American multituberculates. Bull Mus Comp Zool 150:199–246

    Google Scholar 

  • Krause DW, Maas MC (1990) The biogeographic origins of late Paleocene–early Eocene mammalian immigrants to the Western Interior of North America. In: Bown TM, Rose KD (eds) Dawn of the age of mammals in the northern part of the Rocky Mountain Interior, North America. Geol Soc Am Spec Pap 243. Geological Society of America, Boulder, pp 71–105

    Google Scholar 

  • Krause DW, O’Connor PM, Curry Rogers K, Sampson SD, Buckley GA, Rogers RR (2006) Late Cretaceous terrestrial vertebrates from Madagascar: implications for Latin American biogeography. Ann Mo Bot Gard 93:178–208

    Article  Google Scholar 

  • Kumazawa Y, Nishida M (2000) Molecular phylogeny of osteoglossoids: a new model for Gondwanian origin and plate tectonic transportation of Asian arowana. Mol Biol Evol 17:1869–1873

    CAS  PubMed  Google Scholar 

  • Macey JR, Schulte JA II, Larson A, Ananjeva NB, Wang Y, Pethiyagoda R, Rastegar-Pouyani N, Papenfuss TJ (2000) Evaluating trans-Tethys migration: an example using acrodont lizard phylogenetics. Syst Biol 49:233–256

    Article  CAS  PubMed  Google Scholar 

  • Marivaux L, Bocat L, Chaimanee Y, Jaeger J-J, Marandat B, Srisuk P, Tafforeau P, Yamee C, Welcomme J-L (2006) Cynocephalid dermopterans from the Palaeogene of South Asia (Thailand, Myanmar and Pakistan): systematic, evolutionary and palaeobiogeographic implications. Zool Scr 35:395–420

    Article  Google Scholar 

  • McKenna MC (1973) Sweepstakes, filters, corridors, Noah’s Arks, and Beached Viking Funeral ships in palaeogeography. In: Tarling SH, Runcorn SK (eds) Implications of continental drift to the earth sciences. Academic, London, pp 293–306

    Google Scholar 

  • Meng J, Hu Y, Li C (2003) The osteology of Rhombomylus (Mammalia, Glires): implications for phylogeny and evolution of Glires. Bull Am Mus Nat Hist 275:1–248

    Article  Google Scholar 

  • Morley RJ, Dick CW (2003) Missing fossils, molecular clocks, and the origin of the Melastomataceae. Am J Bot 90:1638–1644

    Article  Google Scholar 

  • Murphy WJ, Collier GE (1997) A molecular phylogeny for aplocheiloid fishes (Atherinomorpha, Cyprinodontiformes): the role of vicariance and the origins of annualism. Mol Biol Evol 14:790–799

    CAS  PubMed  Google Scholar 

  • Prasad GVR, Godinot M (1994) Eutherian tarsal bones from the Late Cretaceous of India. J Paleontol 68:892–902

    Google Scholar 

  • Prasad GVR, Rage J-C (1995) Ampibians and squamates from the Maastrichtian of Naskal, India. Cretac Res 16:95–107

    Article  Google Scholar 

  • Prasad GVR, Sahni A (1988) First Cretaceous mammal from India. Nature 332:638–640

    Article  Google Scholar 

  • Prasad GVR, Jaeger J-J, Sahni A, Gheerbrant E, Khajuria CK (1994) Eutherian mammals from the Upper Cretaceous (Maastrichtian) intertrappean beds of Naskal, Andhra Pradesh, India. J Vertebr Paleontol 14:260–277

    Google Scholar 

  • Prasad GVR, Verma O, Gheerbrant E, Goswami A, Khosla A, Parmar V, Sahni A (2010) First mammal evidence from the Late Cretaceous of India for biotic dispersal between India and Africa at the KT transition. C R Palevol (in press)

  • Prasad GVR, Verma O, Sahni A, Krause DW, Khosla A, Parmar V (2007a) A new Late Cretaceous gondwanatherian mammal from central India. Proc Indian Natl Sci Acad 73:17–24

    Google Scholar 

  • Prasad GVR, Verma O, Sahni A, Parmar V, Khosla A (2007b) A Cretaceous hoofed mammal from India. Science 318:937

    Article  CAS  PubMed  Google Scholar 

  • Rana RS, Wilson GP (2003) New Late Cretaceous mammals from the Intertrappean beds of Rangapur, India and paleobiogeographic framework. Acta Palaeontol Pol 48:331–348

    Google Scholar 

  • Rose KD, Rana RS, Sahni A, Kumar K, Missiaen P, Singh L, Smith T (2009) Early Eocene primates from Gujarat, India. J Hum Evol 56:366–404

    Article  PubMed  Google Scholar 

  • Rowley DB (1996) Age of initiation of collision between India and Asia: a review of stratigraphic data. Earth Planet Sci Lett 145:1–13

    Article  CAS  Google Scholar 

  • Russell DE (1964) Les Mammifères Paléocènes d’Europe. Mém Mus Natl Hist Nat, Sér C 13:1–324

    Google Scholar 

  • Sahni A, Kumar K, Hartenberger J-L, Jaeger J-J, Rage J-C, Sudre J, Vianey-Liaud M (1982) Microvértebrés nouveaux des Trapps du Deccan (Inde): mise en évidence d’une voie de communication terrestre probable entre la Laurasie et l’Inde à la limite Crétacé–Tertiaire. Bull Soc Géol Fr 24:1093–1099

    Google Scholar 

  • Sargis EJ (2002) Functional morphology of the forelimb of tupaiids (Mammalia, Scandentia) and its phylogenetic implications. J Morphol 253:10–42

    Article  PubMed  Google Scholar 

  • Sigé B, Jaeger J-J, Sudre J, Vianey-Liaud M (1990) Altiatlasius koulchii n. gen. et sp., primate omomyidé du Paléocène supérieur du Maroc, et les origines des euprimates. Palaeontogr Abt A 214:31–56

    Google Scholar 

  • Silcox MT, Bloch JI, Sargis EJ, Boyer DM (2005) Euarchonta (Dermoptera, Scandentia, Primates). In: Rose KD, Archibald JD (eds) The rise of placental mammals: origins and relationships of the major extant clades. The Johns Hopkins University Press, Baltimore, pp 127–144

    Google Scholar 

  • Singh RS, Kar R, Prasad GVR (2006) Palynological constraints on the age of mammal-yielding Deccan intertrappean beds of Naskal, Rangareddi district, Andhra Pradesh. Curr Sci 90(1):1281–1285

    CAS  Google Scholar 

  • Sloan RE, Van Valen L (1965) Cretaceous mammals from Montana. Science 148:220–227

    Article  PubMed  Google Scholar 

  • Smith T, Rose KD, Gingerich PD (2006) Rapid Asia–Europe–North America geographic dispersal of earliest Eocene primate Teilhardina during the Paleocene–Eocene thermal maximum. Proc Natl Acad Sci USA 103:11223–11227

    Article  CAS  PubMed  Google Scholar 

  • Smith T, De Bast E, Sigé B (2009) Adapisoriculid mammals from the Paleocene of Hainin (Belgium) shed light on the phylogenetic affinities of the enigmatic arboreal Cretaceous Deccanolestes from the Deccan Traps of India. J Vertebr Paleontol 29:183A

    Google Scholar 

  • Springer MS, Murphy WJ, Eizirik E, O’Brien SJ (2003) Placental mammal diversification and the Cretaceous–Tertiary boundary. Proc Natl Acad Sci USA 100:1056–1061

    Article  CAS  PubMed  Google Scholar 

  • Storch G (2008) Skeletal remains of a diminutive primate from the Paleocene of Germany. Naturwissenschaften 95:927–930

    Article  CAS  PubMed  Google Scholar 

  • Szalay FS, Dagosto M (1980) Locomotor adaptations as reflected on the humerus of Paleogene primates. Folia Primatol 34:1–45

    Article  CAS  PubMed  Google Scholar 

  • Szalay FS, Lucas SG (1996) The postcranial morphology of Paleocene Chriacus and Mixodectes and the phylogenetic relationships of archontan mammals. New Mex Mus Nat Hist Sci Bull 7:1–47

    Google Scholar 

  • Szalay FS, Sargis EJ (2001) Model-based analysis of postcranial osteology of marsupials from the Palaeocene of Itaboraí (Brazil) and the phylogenetics and biogeography of Metatheria. Geodiversitas 23:139–302

    Google Scholar 

  • Tong Y-S (1988) Fossil tree shrews from the Eocene Hetaoyuan Formation of Xichuan, Henan. Vertebr PalAsiat 26:214–220

    Google Scholar 

  • Van Valen L, Sloan RE (1965) The earliest primates. Science 150:743–745

    Article  PubMed  Google Scholar 

  • Vandamme D, Courtillot V, Montigny R, Besse J (1991) Paleomagnetism and age determinations of the Deccan traps (India): results of the Nagpur–Bombay traverse and review of earlier work. Rev Geophys 29:159–190

    Article  Google Scholar 

  • Waddell PJ, Okada N, Hasegawa M (1999) Towards resolving the interordinal relationships of placental mammals. Syst Biol 48:1–5

    Article  CAS  PubMed  Google Scholar 

  • Whatley RC, Bajpai S (2006) Extensive endemism among the Maastrichtian non-marine Ostracoda of India with implications for palaeobiogeography and “Out of India” dispersal. Rev Esp Micropaleontol 38:229–244

    Google Scholar 

  • Wible JR, Rougier GW, Novacek MJ, Asher RJ (2007) Cretaceous eutherians and Laurasian origin for placental mammals near the K/T boundary. Nature 447:1003–1006

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

P Gingerich and R Fox provided access to plesiadapid and other fossil euarchontan specimens and M Jin granted loans that allowed the inclusion of specimens of Protungulatum and Procerberus. S Judex and C Rubin provided access to the Scanco µCT 40 machine. Discussions with J Bloch, S Chester, E Sargis, and E Seiffert provided important insights. S Florales took SEM pictures of the humerus and ulna. We are grateful for the comments of three anonymous reviewers that significantly improved the manuscript. Funding was provided via a National Science Foundation (NSF) doctoral dissertation improvement grant to DMB (BCF-0622544), an NSF grant (EAR-0446488) to DWK, and by the Department of Science and Technology (New Delhi; Grant No. SR/S4/ES/24/2002) to GVRP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doug M. Boyer.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

ESM Table 1

Humerus measurements. See Fig. 5 for illustration of measurements. G1 geometric mean of all measurements except EEC, used for shape variables of principal coordinates analysis, G2 geometric mean of all variables except TL and CL, used to represent humerus size in main text Fig. 3, S&D Szalay and Dagosto. (DOC 119 kb)

ESM Table 2

Coordinate loadings. Eigenvalue and percent variance represented by each coordinate follows its name in parentheses. Variables with top four highest Pearson correlation coefficients are given below the coordinate to which they are correlated (coefficient of correlation in parentheses). See main text Fig. 5 for illustration of measurements. (DOC 50 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Boyer, D.M., Prasad, G.V.R., Krause, D.W. et al. New postcrania of Deccanolestes from the Late Cretaceous of India and their bearing on the evolutionary and biogeographic history of euarchontan mammals. Naturwissenschaften 97, 365–377 (2010). https://doi.org/10.1007/s00114-010-0648-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-010-0648-0

Keywords

  • Adapisoriculid
  • Afrodon
  • Paleobiogeography
  • Palaeoryctoid
  • Placental
  • Primate origins
  • Sweepstakes dispersal