Spider orientation and hub position in orb webs

Abstract

Orb-web building spiders (Araneae: Araneoidea, Uloboridae) can be considered as territorial central place foragers. In territorial central place foragers, the optimal foraging arena is circular, with the forager sitting in its centre. In orb webs, the spider’s orientation (head up or head down) whilst waiting for prey on the hub of its web and the downwards–upwards asymmetry of its running speeds are the probable causes for the observed deviation of the hub from the web’s centre. Here, we present an analytical model and a more refined simulation model to analyse the relationships amongst the spider’s running speeds, its orientation whilst waiting for prey and the vertical asymmetry of orb webs. The results of our models suggest that (a) waiting for prey head down is generally favourable because it allows the spider to reach the prey in its web on average quicker than spiders waiting head up, (b) the downwards–upwards running speed asymmetry, together with the head-down orientation of most spiders, are likely causes for the observed vertical asymmetry of orb webs, (c) waiting head up can be advantageous for spiders whose downwards–upwards running speed asymmetry is small and who experience high prey tumbling rates and (d) spiders waiting head up should place their hub lower than similar spiders waiting head down.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. ap Rhisiart A, Vollrath F (1994) Design features of the orb web of the spider, Araneus diadematus. Behav Ecol 5:280–287. doi:10.1093/beheco/5.3.280

    Article  Google Scholar 

  2. Blackledge TA, Zevenbergen JM (2006) Mesh width influences prey retention in spider orb webs. Ethology 112:1194–1201. doi:10.1111/j.1439-0310.2006.01277.x

    Article  Google Scholar 

  3. Bleher B (2000) Development of web-building and spinning apparatus in the early ontogeny of Nephila madagascariensis (Vinson, 1863) (Araneae: Tetragnathidae). Bull Br Arachnol Soc 11:275–283

    Google Scholar 

  4. Breed AL, Levine VD, Peakall DB, Witt PN (1964) The fate of the intact orb web of the spider Araneus diadematus Cl. Behaviour 23:43–60. doi:10.1163/156853964X00085

    Article  Google Scholar 

  5. Coslovsky M (2007) Asymmetry in spider webs: an adaptation to prey capture or to web building? Master thesis, University of Basel

  6. Coslovsky M, Zschokke S (2009) Asymmetry in orb-webs: an adaptation to web building costs? J Insect Behav 22:29–38. doi:10.1007/s10905-008-9151-2

    Article  Google Scholar 

  7. Curtis JT, Carrel JE (2000) Defaecation behaviour of Argiope aurantia (Araneae: Araneidae). Bull Br Arachnol Soc 11:339–342

    Google Scholar 

  8. de Crespigny FEC, Herberstein ME, Elgar MA (2001) The effect of predator–prey distance and prey profitability on the attack behaviour of the orb-web spider Argiope keyserlingi (Araneidae). Aust J Zool 49:213–221. doi:10.1071/ZO00074

    Article  Google Scholar 

  9. Denny M (1976) The physical properties of spider's silk and their role in the design of orb-webs. J Exp Biol 65:483–506

    Google Scholar 

  10. Eberhard WG (1975) The ‘inverted ladder’ orb web of Scoloderus sp. and the intermediate orb of Eustala (?) sp. Araneae: Araneidae. J Nat Hist 9:93–106. doi:10.1080/00222937500770071

    Article  Google Scholar 

  11. Eberhard WG (1989) Effects of orb web orientation and spider size on prey retention. Bull Br Arachnol Soc 8:45–48

    Google Scholar 

  12. Endo T (1988) Patterns of prey utilization in a web of orb-weaving spider Araneus pinguis (Karsch). Res Popul Ecol 30:107–121. doi:10.1007/BF02512606

    Article  Google Scholar 

  13. Heiling AM, Herberstein ME (1998) The web of Nuctenea sclopetaria (Araneae, Araneidae): relationship between body size and web design. J Arachnol 26:91–96

    Google Scholar 

  14. Herberstein ME, Heiling AM (1999) Asymmetry in spider orb webs: a result of physical constraints? Anim Behav 58:1241–1246. doi:10.1006/anbe.1999.1255

    Article  PubMed  Google Scholar 

  15. Herberstein ME, Gaskett AC, Glencross D, Hart S, Jaensch S, Elgar MA (2000) Does the presence of potential prey affect web design in Argiope keyserlingi (Araneae, Araneidae)? J Arachnol 28:346–350. doi:10.1636/0161-8202(2000)028[0346:DTPOPP]2.0.CO;2

    Article  Google Scholar 

  16. Horn HS (1968) The adaptive significance of colonial nesting in the Brewer's Blackbird (Euphagus cyanocephalus). Ecology 49:682–694. doi:10.2307/1935532

    Article  Google Scholar 

  17. Huffman SW, Brown CW (2005) Multivariate analysis of infrared spectroscopic image data. In: Bhargava R, Levin IW (eds) Spectrochemical analysis using infrared multichannel detectors. Blackwell, Oxford, pp 85–114

    Google Scholar 

  18. Klärner D, Barth FG (1982) Vibratory signals and prey capture in orb-weaving spiders (Zygiella x-notata, Nephila clavipes; Araneidae). J Comp Physiol A 148:445–455. doi:10.1007/BF00619783

    Article  Google Scholar 

  19. Kuntner M, Haddad CR, Aljancic G, Blejec A (2008) Ecology and web allometry of Clitaetra irenae, an arboricolous African orb-weaving spider (Araneae, Araneoidea. Nephilidae). J Arachnol 36:583–594. doi:10.1636/T07-54.1

    Article  Google Scholar 

  20. Le Guelte L (1967) La structure de la toile et les facteurs externes modifiant le comportement de Zygiella-x-notata Cl. (Araignées, Argiopidae). Rev Comport Anim 1:23–70

    Google Scholar 

  21. Levi HW (1976) The orb-weaver genera Verrucosa, Acanthepeira, Wagneriana, Acacesia, Wixia, Scoloderus and Alpaida North of Mexico (Araneae: Araneidae). Bull Mus Comp Zool Harv Univ 147:351–391

    Google Scholar 

  22. Masters WM, Moffat AJM (1983) A functional explanation of top-bottom asymmetry in vertical orbwebs. Anim Behav 31:1043–1046. doi:10.1016/S0003-3472(83)80010-4

    Article  Google Scholar 

  23. Mayer G (1952) Untersuchungen über Herstellung und Struktur des Radnetzes von Aranea diadema und Zilla x-notata mit besonderer Berücksichtigung des Unterschiedes von Jugend- und Altersnetzen. Z Tierpsychol 9:337–362

    Google Scholar 

  24. Miyashita T (1999) Life-history variation in closely related generalist predators living in the same habitat: a case study with three Cyclosa spiders. Funct Ecol 13:307–314. doi:10.1046/j.1365-2435.1999.00318.x

    Article  Google Scholar 

  25. Moya-Laraño J, Halaj J, Wise DH (2002) Climbing to reach females: Romeo should be small. Evolution 56:420–425. doi:10.1111/j.0014-3820.2002.tb01351.x

    PubMed  Google Scholar 

  26. Moya-Laraño J, Vinkovi D, Allards C, Foellmer M (2007) Gravity still matters. Funct Ecol 21:1178–1181. doi:10.1111/j.1365-2435.2007.01335.x

    Article  Google Scholar 

  27. Nakahira K (1961) Spiders in Kochi Prefecture. Atypus 23/24:27–60 [in Japanese]

    Google Scholar 

  28. Nakata K, Ushimaru A (1999) Feeding experience affects web relocation and investment in web threads in an orb-web spider, Cyclosa argenteoalba. Anim Behav 57:1251–1255. doi:10.1006/anbe.1999.1105

    Article  PubMed  Google Scholar 

  29. Nakata K, Ushimaru A (2004) Difference in web construction behavior at newly occupied web sites between two Cyclosa species. Ethology 110:397–411. doi:10.1111/j.1439-0310.2004.00983.x

    Article  Google Scholar 

  30. Orians GH, Pearson NE (1979) On the theory of central place foraging. In: Horn DJ, Stairs GR, Mitchell RD (eds) Analysis of ecological systems. Ohio State University Press, Columbus, pp 155–177

    Google Scholar 

  31. Peakall DB, Witt PN (1976) The energy budget of an orb web-building spider. Comp Biochem Physiol 54:187–190. doi:10.1016/S0300-9629(76)80094-1

    Article  CAS  Google Scholar 

  32. Risch P (1977) Quantitative analysis of orb web patterns in four species of spiders. Behav Genet 7:199–238. doi:10.1007/BF01066276

    Article  CAS  PubMed  Google Scholar 

  33. Schoener TW (1979) Generality of the size–distance relation in models of optimal feeding. Am Nat 114:902–914. doi:10.1086/283537

    Article  Google Scholar 

  34. Sherman PM (1994) The orb-web: an energetic and behavioural estimator of a spider's dynamic foraging and reproductive strategies. Anim Behav 48:19–34. doi:10.1006/anbe.1994.1208

    Article  Google Scholar 

  35. Stowe MK (1978) Observations of two nocturnal orbweavers that build specialized webs: Scoloderus cordatus and Wixia ectypa (Araneae: Araneidae). J Arachnol 6:141–146

    Google Scholar 

  36. Tanikawa A (1992) A revisional study of the Japanese spiders of the genus Cyclosa Menge (Araneae: Araneidae). Acta arachnol 41:11–85. doi:10.2476/asjaa.41.11

    Article  Google Scholar 

  37. Uetz GW, Johnson AD, Schemske DW (1978) Web placement, web structure, and prey capture in orb-weaving spiders. Bull Br Arachnol Soc 4:141–148

    Google Scholar 

  38. Venner S, Bel-Venner M-C, Pasquet A, Leborgne R (2003) Body-mass-dependent cost of web-building behavior in an orb weaving spider, Zygiella x-notata. Naturwissenschaften 90:269–272. doi:10.1007/s00114-003-0420-9

    Article  CAS  PubMed  Google Scholar 

  39. Vollrath F (1992) Analysis and interpretation of orb spider exploration and web-building behavior. Adv Stud Behav 21:147–199. doi:10.1016/S0065-3454(08)60144-8

    Article  Google Scholar 

  40. Wiehle H (1927) Beiträge zur Kenntnis des Radnetzbaues der Epeiriden, Tetragnathiden und Uloboriden. Z Morphol Ökol Tiere 8:468–537. doi:10.1007/BF00407450

    Article  Google Scholar 

  41. Wiehle H (1928) Beiträge zur Biologie der Araneen, insbesondere zur Kenntnis des Radnetzbaues. Z Morphol Ökol Tiere 11:115–151. doi:10.1007/BF02425772

    Article  Google Scholar 

  42. Witt PN, Reed CF (1965) Spider web-building. Measurement of web geometry identifies components in a complex invertebrate behavior pattern. Science 149:1190–1197. doi:10.1126/science.149.3689.1190

    Article  PubMed  Google Scholar 

  43. Witt PN, Scarboro MB, Daniels R, Peakall DB, Gause RL (1977) Spider web-building in outer space: evaluation of records from the Skylab spider experiment. J Arachnol 4:115–124

    Google Scholar 

  44. Yoshikura M (1987) The biology of spiders. Japan Scientific Societies, Tokyo [in Japanese]

    Google Scholar 

  45. Zschokke S (1993) The influence of the auxiliary spiral on the capture spiral in Araneus diadematus Clerck (Araneidae). Bull Br Arachnol Soc 9:169–173

    Google Scholar 

  46. Zschokke S (1999) Nomenclature of the orb-web. J Arachnol 27:542–546

    Google Scholar 

  47. Zschokke S (2002) Form and function of the orb-web. In: Toft S, Scharff N (eds) European Arachnology 2000. Aarhus University Press, Aarhus, pp 99–106

    Google Scholar 

  48. Zschokke S, Vollrath F (1995) Web construction patterns in a range of orb-weaving spiders (Araneae). Eur J Entomol 92:523–541

    Google Scholar 

  49. Zschokke S, Hénaut Y, Benjamin SP, García-Ballinas JA (2006) Prey-capture strategies in sympatric web-building spiders. Can J Zool 84:964–973. doi:10.1139/z06-074

    Article  Google Scholar 

Download references

Acknowledgements

We thank Michael Coslovsky, Peter Stoll and anonymous reviewers for their helpful comments. This work was supported by the Treubelfonds, Basel to SZ and by the MEXT Grant-in-Aid for Young Scientists (B; 15770017, 2003-2004) to KN.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Samuel Zschokke.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zschokke, S., Nakata, K. Spider orientation and hub position in orb webs. Naturwissenschaften 97, 43 (2010). https://doi.org/10.1007/s00114-009-0609-7

Download citation

Keywords

  • Biomechanics
  • Central place foraging
  • Spider web
  • Gravity
  • Up-down asymmetry
  • Web design