Skip to main content

How do animals use substrate-borne vibrations as an information source?

Abstract

Animal communication is a dynamic field that promotes cross-disciplinary study of the complex mechanisms of sending and receiving signals, the neurobiology of signal detection and processing, and the behaviors of animals creating and responding to encoded messages. Alongside visual signals, songs, or pheromones exists another major communication channel that has been rather neglected until recent decades: substrate-borne vibration. Vibrations carried in the substrate are considered to provide a very old and apparently ubiquitous communication channel that is used alone or in combination with other information channels in multimodal signaling. The substrate could be ‘the ground’, or a plant leaf or stem, or the surface of water, or a spider’s web, or a honeybee’s honeycomb. Animals moving on these substrates typically create incidental vibrations that can alert others to their presence. They also may use behaviors to create vibrational waves that are employed in the contexts of mate location and identification, courtship and mating, maternal care and sibling interactions, predation, predator avoidance, foraging, and general recruitment of family members to work. In fact, animals use substrate-borne vibrations to signal in the same contexts that they use vision, hearing, touch, taste, or smell. Study of vibrational communication across animal taxa provides more than just a more complete story. Communication through substrate-borne vibration has its own constraints and opportunities not found in other signaling modalities. Here, I review the state of our understanding of information acquisition via substrate-borne vibrations with special attention to the most recent literature.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Aicher B, Tautz J (1990) Vibrational communication in the fiddler crab. Uca pugilator. I. Signal transmission through the substratum. J Comp Physiol A 166:345–353

    Article  Google Scholar 

  2. Arnason BT, O’Connell CE, Hart LA (1998) Long range seismic characteristics of Asian elephant (Elephus maximus) vocalizations and locomotion. J Acoust Soc Am 104:1810

    Article  Google Scholar 

  3. Barbero F, Thomas JA, Bonelli S, Balletto E, Schönrogge K (2009) Queen ants make distinctive sounds that are mimicked by a butterfly social parasite. Science 323:782–785. doi:10.1126/science.1163583

    CAS  PubMed  Article  Google Scholar 

  4. Barnett KE, Cocroft RB, Fleishman LJ (1999) Possible communication by substrate vibration in a chameleon. Copeia 1999:225–228

    Article  Google Scholar 

  5. Barth FG (1982) Spiders and vibratory signals: sensory reception and behavioral significance. In: Witt PN, Rovner JS (eds) Spider communication. Princeton University Press, Princeton, NJ, pp 67–122

    Google Scholar 

  6. Barth FG, Bleckmann H, Bohnenberger J, Seyfarth E-A (1988) Spiders of the genus Cupiennius Simon 1891 (Araneae, Ctenidae): II. On the vibratory environment of a wandering spider. Oecologia 77:194–201

    Article  Google Scholar 

  7. Bell PD (1980) Transmission of vibrations along plant stems: implications for insect communication. J N Y Entomol Soc 88:210–216

    Google Scholar 

  8. Birch MC, Keenlyside JJ (1991) Tapping behavior is a rhythmic communication in the death-watch beetle, Xestobium rufovillosum (Coleoptera: Anobiidae). J Insect Behav 4:257–263

    Article  Google Scholar 

  9. Blanco RE, Rinderknecht A (2008) Estimation of hearing capabilities of Pleistocene ground sloths (Mammalia, Xenarthra) from middle-ear anatomy. J Vert Paleontol 28:274–276. doi:10.1671/0272-4634(2008)28[274:EOHCOP]2.0.CO;2

    Article  Google Scholar 

  10. Bouley DM, Alarcón CN, Hildebrandt T, O’Connell-Rodwell CE (2007) The distribution, density and three-dimensional histomorphology of Pacinian corpuscles in the foot of the Asian elephant (Elephas maximus) and their potential role in seismic communication. J Anat 211:428–435

    CAS  PubMed  Google Scholar 

  11. Brownell PH (1977) Compressional and surface waves in sand used by desert scorpions to locate prey. Science 197:479–482

    PubMed  Article  CAS  Google Scholar 

  12. Brownell PH (1984) Prey detection by the sand scorpion. Sci Am 251:86–97

    Article  Google Scholar 

  13. Brownell P, Farley RD (1979a) Detection of vibrations in sand by tarsal sense organs of the nocturnal scorpion, Paruroctonus mesaensis. J Comp Physiol A 131:23–30

    Article  Google Scholar 

  14. Brownell P, Farley RD (1979b) Orientation to vibrations in sand by the nocturnal scorpion Paruroctonus mesaensis: mechanism of target localization. J Comp Physiol A 131:31–38

    Article  Google Scholar 

  15. Brownell P, Farley RD (1979c) Prey-localizing behaviour of the nocturnal desert scorpion, Paruroctonus mesaensis: orientation to substrate vibrations. Anim Behav 27:185–193

    Article  Google Scholar 

  16. Brownell PH, van Hemmen JL (2001) Vibration sensitivity and a computational theory for prey-localizing behavior in sand scorpions. Am Zool 41:1229–1240

    Article  Google Scholar 

  17. Caldwell MS, McDaniel JG, Warkentin KM (2009) Frequency information in the vibration-cued escape hatching of red-eyed treefrogs. J Exp Biol 212:566–575. doi:10.1242/jeb.026518

    PubMed  Article  Google Scholar 

  18. Calne DB, Pallis CA (1966) Vibratory sense: a critical review. Brain 89:723–746

    CAS  PubMed  Article  Google Scholar 

  19. Casas J, Bacher S, Tautz J, Meyhöfer R, Pierre D (1998) Leaf vibrations and air movements in a leafminer-parasitoid system. Biol Control 11:147–153

    Article  Google Scholar 

  20. Casas J, Magal C, Sueur J (2007) Dispersive and non-dispersive waves through plants: implications for arthropod vibratory communication. Proc R Soc B 274:1087–1092. doi:10.1098/rspb.2006.0306

    PubMed  Article  Google Scholar 

  21. Castellanos I, Barbosa P (2006) Evaluation of predation risk by a caterpillar using substrate-borne vibrations. Anim Behav 72:461–469. doi:10.1016/j.anbehav.2006.02.005

    Article  Google Scholar 

  22. Catania KC (2008) Worm grunting, fiddling, and charming—humans unknowingly mimic a predator to harvest bait. PLoS ONE 3(10):e3472. doi:10.1371/journal.pone.0003472

    PubMed  Article  CAS  Google Scholar 

  23. Claridge MF (1985) Acoustic signals in the Homoptera: behavior, taxonomy, and evolution. Annu Rev Entomol 30:297–317

    Article  Google Scholar 

  24. Cocroft RB (1996) Insect vibrational defence signals. Nature 382:679–680

    Article  Google Scholar 

  25. Cocroft RB (1999a) Offspring-parent communication in a subsocial treehopper (Hemiptera: Membracidae: Umbonia crassicornis). Behaviour 136:1–21

    Google Scholar 

  26. Cocroft RB (1999b) Parent-offspring communication in response to predators in a subsocial treehopper (Hemiptera: Membracidae: Umbonia crassicornis). Ethology 105:553–568

    Google Scholar 

  27. Cocroft RB (2002) Antipredator defense as a limited resource: unequal predation risk in broods of an insect with maternal care. Behav Ecol 13:125–133

    Article  Google Scholar 

  28. Cocroft RB, Rodríguez RL (2005) The behavioral ecology of insect vibrational communication. Bioscience 55:323–334. doi:10.1641/0006-3568(2005)055[0323:TBEOIV]2.0.CO;2

    Article  Google Scholar 

  29. Cocroft RB, Shugart HJ, Konrad KT, Tibbs K (2006) Variation in plant substrates and its consequences for insect vibrational communication. Ethology 112:779–789. doi:10.1111/j.1439-0310.2006.01226.x

    Article  Google Scholar 

  30. Čokl A, Prešern J, Virant-Doberlet M, Bagwell GJ, Millar JG (2004) Vibratory signals of the harlequin bug and their transmission through plants. Physiol Entomol 29:372–380

    Article  Google Scholar 

  31. Čokl A, Zorović M, Millar JG (2007) Vibrational communication along plants by the stink bugs Nezara viridula and Murgantia histrionica. Behav Process 75:40–54. doi:10.1016/j.beproc.2007.01.003

    Article  Google Scholar 

  32. Darwin C (1911) The formation of vegetable mould through the action of worms: with observations on their habits. Appleton, London

    Google Scholar 

  33. DeLuca PA, Morris GK (1998) Courtship communication in meadow katydids: female preference for large male vibrations. Behaviour 135:777–794

    Google Scholar 

  34. Devetak D (1985) Detection of substrate vibrations in the antlion larva, Myrmeleon formicarius (Neuroptera: Myrmeleonidae). Biol Vestn 33:11–22

    Google Scholar 

  35. Devetak D, Pabst MA, Delakorda SL (2004) Leg chordotonal organs and campaniform sensilla in Chrysoperla Steinmann 1964 (Neuroptera): structure and function. Denisia 13:163–171

    Google Scholar 

  36. DeVries PJ (1990) Enhancement of symbioses between butterfly caterpillars and ants by vibrational communication. Science 248:1104–1106

    PubMed  Article  CAS  Google Scholar 

  37. Djemai I, Casas J, Magal C (2001) Matching host reactions to parasitoid wasp vibrations. Proc R Soc Lond B Biol Sci 268:2403–2408

    CAS  Article  Google Scholar 

  38. Dorward PK, McIntyre AK (1971) Responses of vibration-sensitive receptors in the interosseous region of the duck’s hind Limb. J Physiol (Lond) 219:77–87

    CAS  Google Scholar 

  39. Elias DO, Mason AC, Maddison WP, Hoy RR (2003) Seismic signals in a courting male jumping spider (Araneae: Salticidae). J Exp Biol 206:4029–4039. doi:10.1242/jeb.00634

    PubMed  Article  Google Scholar 

  40. Elias DO, Mason AC, Hoy RR (2004) The effect of substrate on the efficacy of seismic courtship signal transmission in the jumping spider Habronattus dossenus (Araneae: Salticidae). J Exp Biol 207:4105–4110. doi:10.1242/jeb.01261

    PubMed  Article  Google Scholar 

  41. Elias DO, Hebets EA, Hoy RR, Mason AC (2005) Seismic signals are crucial for male mating success in a visual specialist jumping spider (Araneae: Salticidae). Anim Behav 69:931–938. doi:10.1016/j.anbehav.2004.06.024

    Article  Google Scholar 

  42. Elias DO, Kasumovic MM, Punzalan D, Andrade MCB, Mason AC (2008) Assessment during aggressive contests between male jumping spiders. Anim Behav 76:901–910. doi:10.1016/j.anbehav.2008.01.032

    PubMed  Article  Google Scholar 

  43. Emerson AE, Simpson RC (1929) Apparatus for the detection of substratum communication among termites. Science 69:648–649

    PubMed  Article  CAS  Google Scholar 

  44. Fertin A, Casas J (2007) Orientation towards prey in antlions: efficient use of wave propagation in sand. J Exp Biol 210:3337–3343. doi:10.1242/jeb.004473

    PubMed  Article  Google Scholar 

  45. Field LH (1993) Observations on stridulatory, agonistic, and mating behaviour of Hemideina ricta (Stenopelmatidae: Orthoptera), the rare Banks Peninsula weta. N Z Entomol 16:68–74

    Google Scholar 

  46. Field LH, Rind FC (1992) Stridulatory behaviour in a New Zealand weta, Hemideina crassidens. J Zool 228:371–394

    Article  Google Scholar 

  47. Foxe JJ, Wylie GR, Martinez A, Schroeder CE, Javitt DC, Guilfoyle D, Ritter W, Murray MM (2002) Auditory-somatosensory multisensory processing in auditory association cortex: an fMRI study. J Neurophysiol 88:540–543

    PubMed  Google Scholar 

  48. Gogala M (1985) Vibrational songs of land bugs and their production. In: Kalmring K, Elsner N (eds) Acoustic and vibrational communication in insects. Paul Parey, Berlin, pp 143–150

    Google Scholar 

  49. Gogala M, Čokl A, Drašlar K, Blaževič A (1974) Substrate-borne sound communication in Cydnidae (Heteroptera). J Comp Physiol 94:25–31

    Article  Google Scholar 

  50. Goulson D, Birch MC, Wyatt TD (1994) Mate location in the deathwatch beetle, Xestobium rufovillosum De Geer (Anobiidae): orientation to substrate vibrations. Anim Behav 47:899–907

    Article  Google Scholar 

  51. Gregory JE, McIntyre AK, Proske U (1986) Vibration-evoked responses from lamellated corpuscles in the legs of kangaroos. Exp Brain Res 62:648–653

    CAS  PubMed  Article  Google Scholar 

  52. Gűnther RH, O’Connell-Rodwell CE, Klemperer SL (2004) Seismic waves from elephant vocalizations: a possible communication mode? Geophys Res Lett 31:1–4. doi:10.1029/2004GL019671

    Article  Google Scholar 

  53. Hartline PH (1971) Physiological basis for detection of sound and vibration in snakes. J Exp Biol 54:349–371

    CAS  PubMed  Google Scholar 

  54. Hebets EA (2008) Seismic signal dominance in the multimodal courtship display of the wolf spider Schizocosa stridulans Stratton 1991. Behav Ecol 6:1250–1257. doi:10.1093/beheco/arn080

    Article  Google Scholar 

  55. Hebets EA, Uetz GW (1999) Female responses to isolated signals from multimodal male courtship displays in the wolf spider genus Schizocosa (Araneae: Lycosidae). Anim Behav 57:865–872

    PubMed  Article  Google Scholar 

  56. Hebets EA, Elias DO, Mason AC, Miller GL, Stratton GE (2008) Substrate-dependent signalling success in the wolf spider, Schizocosa retrorsa. Anim Behav 75:605–615. doi:10.1016/j.anbehav.2007.06.021

    Article  Google Scholar 

  57. Henry CS, Wells MLM (2004) Adaptation or random change? The evolutionary response of songs to substrate properties in lacewings (Neuroptera: Chrysopidae: Chrysoperla). Anim Behav 68:879–895. doi:10.1016/j.anbehav.2003.10.032

    Article  Google Scholar 

  58. Heth G, Frankenberg E, Raz A, Nevo E (1987) Vibrational communication in subterranean mole rats (Spalax ehrenbergi). Behav Ecol Sociobiol 21:31–33

    Article  Google Scholar 

  59. Hetherington TE (1988) Biomechanics of vibration reception in the bullfrog, Rana catesbeiana. J Comp Physiol A 163:43–52

    CAS  PubMed  Article  Google Scholar 

  60. Hill PSM (1998) Environmental and social influences on calling effort in the prairie mole cricket (Gryllotalpa major). Behav Ecol 9:101–108

    Article  Google Scholar 

  61. Hill PSM (2008) Vibrational communication in animals. Harvard, Cambridge, London

    Google Scholar 

  62. Hill PSM, Shadley JR (1997) Substrate vibration as a component of a calling song. Naturwissenschaften 84:460–463

    CAS  Article  Google Scholar 

  63. Hill PSM, Shadley JR (2001) Talking back: sending soil vibration signals to lekking prairie mole cricket males. Am Zool 41:1200–1214

    Article  Google Scholar 

  64. Hoch H, Wessel A (2006) Communication by substrate-bone vibrations in cave planthoppers. In: Drosopoulos S, Claridge MF (eds) Insect sounds and communication: physiology, behaviour, ecology and evolution. Taylor & Francis, Boca Raton, FL, pp 187–197

    Google Scholar 

  65. Hoch H, Deckert J, Wessel A (2006) Vibrational signalling in a Gondwanan relict insect (Hemiptera: Coleorrhyncha: Peloridiidae). Biol Lett 2:222–224. doi:10.1098/rsbl.2006.0451

    PubMed  Article  Google Scholar 

  66. Hunt RE (1994) Vibrational signals associated with mating behavior in the treehopper, Enchenopa binotata Say (Hemiptera: Homoptera: Membracidae). J N Y Entomol Soc 102:266–270

    Google Scholar 

  67. Hutchings M, Lewis B (1983) Insect sound and vibration receptors. In: Lewis B (ed) Bioacoustics: a comparative approach. Academic, London, pp 181–205

    Google Scholar 

  68. Jaslow AP, Hetherington TE, Lombard RE (1988) Structure and function of the amphibian middle ear. In: Fritzsch B, Ryan MJ, Wilczynski W, Hetherington TE, Walkowiak W (eds) The evolution of the amphibian auditory system. Wiley, New York, pp 69–91

    Google Scholar 

  69. Kalmring K (1985) Vibrational communication in insects (reception and integration of vibratory information). In: Kalmring K, Elsner N (eds) Acoustic and vibrational communication in insects. Paul Parey, Berlin, pp 127–134

    Google Scholar 

  70. Kanmiya K (2006) Communication by vibratory signals in Diptera. In: Drosopoulos S, Claridge MF (eds) Insect sounds and communication: physiology, behaviour, ecology and evolution. Taylor & Francis, Boca Raton, FL, pp 381–396

    Google Scholar 

  71. Kirchner WH (1997) Acoustical communication in social insects. In: Lehrer M (ed) Orientation and communication in arthropods. Birkhäuser Verlag, Basel, pp 273–300

    Google Scholar 

  72. Kroder S, Samietz J, Schneider D, Dorn S (2007) Adjustment of vibratory signals to ambient temperature in a host-searching parasitoid. Physiol Entomol 32:105–112. doi:10.1111/j.1365-3032.2006.00551.x

    Article  Google Scholar 

  73. Levänen S, Jousmäki V, Hari R (1998) Vibration-induced auditory-cortex activation in a congenitally deaf adult. Curr Biol 8:869–872

    PubMed  Article  Google Scholar 

  74. Lewis ER (1984) Inertial motion sensors. In: Bolis L, Keynes RD, Maddrell SHP (eds) Comparative physiology of sensory systems. Cambridge University Press, Cambridge, pp 587–610

    Google Scholar 

  75. Lewis ER, Narins PM (1985) Do frogs communicate with seismic signals? Science 227:187–189

    PubMed  Article  CAS  Google Scholar 

  76. Lewis ER, Narins PM, Cortopassi KA, Yamada WM, Poinar EH, Moore SW, Yu X-L (2001) Do male white-lipped frogs use seismic signals for intraspecific communication? Am Zool 41:1185–1199

    Article  Google Scholar 

  77. Lewis ER, Narins PM, Jarvis JUM, Bronner G, Mason MJ (2006) Preliminary evidence for the use of microseismic cues for navigation by the Namib golden mole. J Acoust Soc Am 119:1260–1268

    PubMed  Article  Google Scholar 

  78. Lighton JRB (1987) Cost of tokking: the energetics of substrate communication in the tok-tok beetle, Psammodes striatus. J Comp Physiol B 157:11–20

    Article  Google Scholar 

  79. Markl H (1967) Die Verständigung durch Stridulationssignale bei Blattschneiderameisen. I. die biologische Bedeutung der Stridulation. Z Vgl Physiol 57:299–330

    Article  Google Scholar 

  80. Markl H (1983) Vibrational communication. In: Huber H, Markl H (eds) Neuroethology and behavioral physiology. Springer-Verlag, Berlin, pp 332–353

    Google Scholar 

  81. Mason MJ (2001) Middle ear structures in fossorial mammals: a comparison with non-fossorial species. J Zool 255:467–486

    Google Scholar 

  82. Mason MJ (2003) Bone conduction and seismic sensitivity in golden moles (Chrysochloridae). J Zool 260:405–413

    Article  Google Scholar 

  83. Mason MJ, Narins PM (2002) Seismic sensitivity in the desert golden mole (Eremitalpa granti): a review. J Comp Psychol 116:158–163

    PubMed  Article  Google Scholar 

  84. Masters WM, Tautz J, Fletcher NH, Markl H (1983) Body vibration and sound production in an insect (Atta sexdens) without specialized radiating structures. J Comp Physiol A 150:239–249

    Article  Google Scholar 

  85. McIntyre AK (1980) Biological seismography. Trends Neurosci 3:202–205

    Article  Google Scholar 

  86. McNett GD, Cocroft RB (2008) Host shifts favor vibrational signal divergence in Enchenopa binotata treehoppers. Behav Ecol 19:650–656. doi:10.1093/beheco/arn017

    Article  Google Scholar 

  87. McNett GD, Miles RN, Homentcovschi D, Cocroft RB (2006) A method for two-dimensional characterization of animal vibrational signals transmitted along plant stems. J Comp Physiol A 192:1245–1251. doi:10.1007/s00359-006-0153-2

    Article  Google Scholar 

  88. McVean A, Field LH (1996) Communication by substratum vibration in the New Zealand tree weta, Hemideina femorata (Stenopelmatidae: Orthoptera). J Zool 239:101–122

    Article  Google Scholar 

  89. Meyhöfer R, Casas J, Dorn S (1994) Host location by a parasitoid using leafminer vibrations: characterizing the vibrational signals produced by the leafmining host. Physiol Entomol 19:349–359

    Article  Google Scholar 

  90. Michelsen A, Fink F, Gogala M, Traue D (1982) Plants as transmission channels for insect vibrational songs. Behav Ecol Sociobiol 11:269–281

    Article  Google Scholar 

  91. Miranda X (2006) Substrate-borne signal repertoire and courtship jamming by adults of Ennya chrysura (Hemiptera: Membracidae). Ann Entomol Soc Am 99:374–386. doi:10.1603/0013-8746(2006)099[0374:SSRACJ]2.0.CO;2

    Article  Google Scholar 

  92. Mitra O, Callaham MA Jr, Smith ML, Yack JE (2009) Grunting for worms: seismic vibrations cause Diplocardia earthworms to emerge from the soil. Biol Lett 5:16–19. doi:10.1098/rsbl.2008.0456

    CAS  PubMed  Article  Google Scholar 

  93. Morris GK (1980) Calling display and mating behaviour of Copiphora rhinoceros Pictet (Orthoptera: Tettigoniidae). Anim Behav 28:42–51

    Article  Google Scholar 

  94. Morris GK, Mason AC, Wall P, Belwood JJ (1994) High ultrasonic and tremulation signals in neotropical katydids (Orthoptera: Tettigoniidae). J Zool 233:129–163

    Article  Google Scholar 

  95. Narins PM, Lewis ER, Jarvis JJUM, O’Riain J (1997) The use of seismic signals by fossorial Southern African mammals: a neuroethological gold mine. Brain Res Bull 44:641–646

    CAS  PubMed  Article  Google Scholar 

  96. O’Connell CE, Arnason BT, Hart LA (1997) Seismic transmission of elephant vocalizations and movement. J Acoust Soc Am 102:3124

    Article  Google Scholar 

  97. O’Connell-Rodwell CE, Hart LA, Arnason BT (2001) Exploring the potential use of seismic waves as a communication channel by elephants and other large mammals. Am Zool 41:1157–1170

    Article  Google Scholar 

  98. O’Connell-Rodwell CE, Wood JD, Rodwell TC, Puria S, Partan SR, Keefe R, Shriver D, Arnason BT, Hart LA (2006) Wild elephant (Loxodonta africana) breeding herds respond to artificially transmitted seismic stimuli. Behav Ecol Sociobiol 59:842–850. doi:10.1007/s00265-005-0136-2

    Article  Google Scholar 

  99. O’Connell-Rodwell CE, Wood JD, Kinzley C, Rodwell TC, Poole JH, Puria S (2007) Wild African elephants (Loxodonta africana) discriminate between familiar and unfamiliar conspecific seismic alarm calls. J Acoust Soc Am 122:823–830

    PubMed  Article  Google Scholar 

  100. Ossiannilsson F (1949) Insect drummers. A study on the morphology and function of the sound-producing organ of Swedish Homoptera Auchenorrhyncha with notes on their sound production. Opusc Entomol 10(Suppl):1–146

    Google Scholar 

  101. Pearman JV (1928) On sound production in the Psocoptera and on a presumed stridulatory organ. Ecol Monogr 64:179–186 (3rd ser v14)

    Google Scholar 

  102. Polajnar J, Čokl A (2008) The effect of vibratory disturbance on sexual behaviour of the southern green stink bug Nezara viridula (Heteroptera, Pentatomidae). Cent Eur J Biol 3:189–197. doi:10.2478/s11535-008-0008-7

    Article  Google Scholar 

  103. Popper AN, Salmon M, Horch KW (2001) Acoustic detection and communication by decapod crustaceans. J Comp Physiol A 187:83–89

    CAS  PubMed  Article  Google Scholar 

  104. Proske U (1969a) Nerve endings in skin of the Australian black snake. Anat Rec 164:259–266

    CAS  Article  Google Scholar 

  105. Proske U (1969b) Vibration-sensitive mechanoreceptors in snake skin. Exp Neurol 23:187–194

    CAS  Article  Google Scholar 

  106. Quirici V, Costa FG (2007) Seismic sexual signal design of two sympatric burrowing tarantula spiders from meadows of Uruguay: Eupalaestrus weijenberghi and Acanthoscurria suina (Araneae, Theraphosidae). J Arachnol 35:38–45. doi:10.1636/ST06-08.1

    Article  Google Scholar 

  107. Rado R, Levi N, Hauser H, Witcher J, Adler N, Intrator N, Wollberg A, Terkell J (1987) Seismic signalling as a means of communication in a subterranean mammal. Anim Behav 35:1249–1251

    Article  Google Scholar 

  108. Rado R, Himelfarb M, Arensburg B, Terkel J, Wollberg Z (1989) Are seismic communication signals transmitted by bone conduction in the blind mole rat? Hear Res 41:23–30

    CAS  PubMed  Article  Google Scholar 

  109. Rado R, Terkel J, Wollberg Z (1998) Seismic communication signals in the blind mole-rat (Spalax ehrenbergi): electrophysiological and behavioral evidence for their processing by the auditory system. J Comp Physiol A 183:503–511

    CAS  PubMed  Article  Google Scholar 

  110. Randall JA (1993) Behavioural adaptations of desert rodents (Heteromyidae). Anim Behav 45:263–287

    Article  Google Scholar 

  111. Randall JA (1994) Convergences and divergences in communication and social organization of desert rodents. Aust J Zool 42:405–433

    Article  Google Scholar 

  112. Randall JA (1997) Species-specific footdrumming in kangaroo rats, Dipodomys ingens, D. deserti, D. spectabilis. Anim Behav 54:1167–1175

    PubMed  Article  Google Scholar 

  113. Randall JA (2001) Evolution and function of drumming as communication in mammals. Am Zool 41:1143–1156

    Article  Google Scholar 

  114. Randall JA, Matocq MD (1997) Why do kangaroo rats (Dipodomys spectabilis) footdrum at snakes? Behav Ecol 8:404–413

    Article  Google Scholar 

  115. Reuter T, Nummela S, Hemilä S (1998) Elephant hearing. J Acoust Soc Am 104:1122–1123

    CAS  PubMed  Article  Google Scholar 

  116. Rodríguez RL, Sullivan LE, Cocroft RB (2004) Vibrational communication and reproductive isolation in the Enchenopa binotata species complex of treehoppers (Hemiptera: Membracidae). Evolution 58:571–578. doi:10.1636/ST06-08.1

    PubMed  Google Scholar 

  117. Rosengaus RB, Jordan C, Lefebvre ML, Traniello JFA (1999) Pathogen alarm behavior in a termite: a new form of communication in social insects. Naturwissenschaften 86:544–548

    CAS  PubMed  Article  Google Scholar 

  118. Sandberg JB, Stewart KW (2006) Continued studies of vibrational communication (drumming) of North American Plecoptera. Illiesia 2:1–14

    Google Scholar 

  119. Schroeder CE, Lindsley RW, Specht C, Marcovici A, Smiley JF, Javitt DC (2001) Somatosensory input to auditory association cortex in the macaque monkey. J Neurophysiol 85:1322–1327

    CAS  PubMed  Google Scholar 

  120. Schwartzkopff J (1974) Mechanoreception. In: Rockstein M (ed) The physiology of Insecta, vol 2. Academic, New York, pp 273–352

    Google Scholar 

  121. Stratton GE, Uetz GW (1983) Communication via substratum-coupled stridulation and reproductive isolation in wolf spiders (Araneae: Lycosidae). Anim Behav 31:164–172

    Article  Google Scholar 

  122. Szczytko SW, Stewart KW (1979) Drumming behavior of four Nearctic Isoperla (Plecoptera) species. Ann Entomol Soc Am 72:781–786

    Google Scholar 

  123. Tarsitano M, Jackson RR, Kirchner WH (2000) Signals and signal choices made by the araneophagic jumping spider Portia fimbriata while hunting the orb-weaving web spiders Zygiella x-notata and Zosis geniculatus. Ethology 106:595–615

    Article  Google Scholar 

  124. Torr P, Heritage S, Wilson MJ (2004) Vibrations as a novel signal for host location by parasitic nematodes. Int J Parasitol 34:997–999. doi:10.1016/j.ijpara.2004.05.003

    CAS  PubMed  Article  Google Scholar 

  125. VanderSal ND, Hebets EA (2007) Cross-modal effects on learning: a seismic stimulus improves color discrimination learning in a jumping spider. J Exp Biol 210:3689–3695. doi:10.1242/jeb.009126

    PubMed  Article  Google Scholar 

  126. Virant-Doberlet M, Čokl A (2004) Vibrational communication in insects. Neotrop Entomol 33:121–134. doi:10.1590/S1519-566X2004000200001

    Article  Google Scholar 

  127. Virant-Doberlet M, Žežlina I (2007) Vibrational communication of Metcalfa pruinosa (Hemiptera: Fulgoroidea: Flatidae). Ann Entomol Soc Am 100:73–82. doi:10.1603/0013-8746(2007)100[73:VCOMPH]2.0.CO;2

    Article  Google Scholar 

  128. Warkentin KM (1995) Adaptive plasticity in hatching age: a response to predation risk trade-offs. Proc Natl Acad Sci U S A 92:3507–3510

    CAS  PubMed  Article  Google Scholar 

  129. Warkentin KM (2000) Wasp predation and wasp-induced hatching of red-eyed treefrog eggs. Anim Behav 60:503–510

    PubMed  Article  Google Scholar 

  130. Warkentin KM (2005) How do embryos assess risk? Vibrational cues in predator-induced hatching of red-eyed treefrogs. Anim Behav 70:59–71. doi:10.1016/j.anbehav.2004.09.019

    Article  Google Scholar 

  131. Warkentin KM, Caldwell MS, McDaniel JG (2006) Temporal pattern cues in vibrational risk assessment by embryos of the red-eyed treefrog, Agalychnis callidryas. J Exp Biol 209:1376–1384. doi:10.1242/jeb.02150

    PubMed  Article  Google Scholar 

  132. Willi UB, Bronner GN, Narins PM (2006) Ossicular differntiation of airborne and seismic stimuli in the Cape golden mole (Chrysochloris asiatica). J Comp Physiol A 192:267–277. doi:10.1007/s00359-005-0070-9

    CAS  Article  Google Scholar 

  133. Wood J, O’Connell-Rodwell C, Klemperer S (2005) Using seismic sensors to detect elephants and other large mammals: a potential census technique. J Appl Ecol 42:587–594

    Article  Google Scholar 

  134. Young BA (2003) Snake bioacoustics: toward a richer understanding of the behavioral ecology of snakes. Quart Rev Biol 78:303–325. doi:10.1086/377052

    PubMed  Article  Google Scholar 

  135. Young BA, Morain M (2002) The use of ground-borne vibrations for prey localization in the Saharan sand vipers (Cerastes). J Exp Biol 205:661–665

    PubMed  Google Scholar 

Download references

Acknowledgements

I would like to thank my research colleague, John R. Shadley, for making it possible for me to pursue this interest in vibrational communication and my many colleagues in the field for doing such beautiful work with their own focal species. I thank Naturwissenschaften Managing Editor Tatiana Czeschlik for her encouragement and interest in my work. I also thank Karen Warkentin and four anonymous referees for comments made in review that helped to improve and strengthen this paper. Lastly, I thank my newest colleague, Daniel R. Howard, for his thoughtful comments and for being my second set of eyes. Dan also provided photographs for the online version.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Peggy S. M. Hill.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

Supplementary Fig. 4

Female Wellington tree weta (Hemideina crassidens) from Matiu/Somes Islands Scientific and Historic Reserve, Wellington Harbor, North Island, New Zealand. In the New Zealand Anostostomatidae (giant weta, tree weta, and ground weta), most species are known to produce some form of an acoustic signal. However, several species, including those in the genus Hemideina, exhibit behaviors that are likely involved in the production of substrate-borne vibrations (McVean and Field 1996). Photograph reproduced with permission of Daniel R. Howard. (DOC 3,110 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hill, P.S.M. How do animals use substrate-borne vibrations as an information source?. Naturwissenschaften 96, 1355–1371 (2009). https://doi.org/10.1007/s00114-009-0588-8

Download citation

Keywords

  • Vibrational communication
  • Seismic signals
  • Rayleigh waves
  • Bending waves
  • Bioacoustics