Intraspecific competition and high food availability are associated with insular gigantism in a lizard

Abstract

Resource availability, competition, and predation commonly drive body size evolution. We assess the impact of high food availability and the consequent increased intraspecific competition, as expressed by tail injuries and cannibalism, on body size in Skyros wall lizards (Podarcis gaigeae). Lizard populations on islets surrounding Skyros (Aegean Sea) all have fewer predators and competitors than on Skyros but differ in the numbers of nesting seabirds. We predicted the following: (1) the presence of breeding seabirds (providing nutrients) will increase lizard population densities; (2) dense lizard populations will experience stronger intraspecific competition; and (3) such aggression, will be associated with larger average body size. We found a positive correlation between seabird and lizard densities. Cannibalism and tail injuries were considerably higher in dense populations. Increases in cannibalism and tail loss were associated with large body sizes. Adult cannibalism on juveniles may select for rapid growth, fuelled by high food abundance, setting thus the stage for the evolution of gigantism.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2

References

  1. Adamopoulou C, Pafilis P, Valakos E (1999) Diet composition of Podarcis milensis, Podarcis gaigeae and Podarcis erhardii (Sauria: Lacertidae) during summer. Bonn Zool Beitr 48:275–282

    Google Scholar 

  2. Anderson WB, Polis GA (1998) Marine subsidies of island communities in the Gulf of California: evidence from stable carbon and nitrogen isotopes. Oikos 81:75–80

    Article  Google Scholar 

  3. Arnold EN (1988) Caudal autotomy as a defense. In: Gans C, Huey RB (eds) Biology of the reptilia 16, ecology B: defense and life history. Liss, New York, pp 235–273

    Google Scholar 

  4. Barrett K, Anderson WB, Wait AD, Grismer LL, Polis GA, Rose MD (2005) Marine subsidies alter the diet and abundance of insular and coastal lizard populations. Oikos 109:145–153

    Article  Google Scholar 

  5. Boback SM (2003) Body size evolution in snakes: evidence from island populations. Copeia 2003:81–94

    Article  Google Scholar 

  6. Bonnet X, Pearson D, Ladyman M, Lourdais O, Bradshaw D (2002) Heaven’ for serpents? A mark–recapture study of tiger snakes (Notechis scutatus) on Carnac Island, Western Australia. Austral Ecol 27:442–450

    Article  Google Scholar 

  7. Case TJ (1978) A general explanation for insular body size trends in terrestrial vertebrates. Ecology 59:1–18

    Article  Google Scholar 

  8. Case TJ, Schwaner TD (1993) Island mainland body size differences in Australian varanid lizards. Oecologia 94:102–109

    Article  Google Scholar 

  9. Castilla AM, Van Damme R (1996) Cannibalistic propensities in the lizard Podarcis hispanica atrata. Copeia 4:991–994

    Article  Google Scholar 

  10. Cooper WE, Pérez-Mellado V, Vitt LJ (2004) Ease and effectiveness of costly autotomy vary with predation intensity among lizard populations. J Zool 262:243–255

    Article  Google Scholar 

  11. Darlington RB, Smulders TV (2001) Problems with residual analysis. Anim Behav 62:599–602

    Article  Google Scholar 

  12. Dayan T, Simberloff D (2005) Ecological and community-wide character displacement: the next generation. Ecol Lett 8:875–894

    Article  Google Scholar 

  13. Elgar MA, Crespi BJ (1992) Cannibalism: ecology and evolution among diverse taxa. Oxford University Press, Oxford

    Google Scholar 

  14. Freckleton RP (2002) On the misuse of residuals in ecology: regression of residuals versus multiple regression. J Anim Ecol 71:542–545

    Article  Google Scholar 

  15. Garcia-Berthou E (2001) On the misuse of residuals in ecology: testing regression residuals vs. the analysis of covariance. J Anim Ecol 70:708–711

    Article  Google Scholar 

  16. Goltsman ME, Kruchenkova P, Sergeev S, Volodin I, Macdonald DW (2005) ‘‘Island syndrome’’ in a population of Arctic foxes (Alopex lagopus) from Mednyi Island. J Zool 267:405–418

    Article  Google Scholar 

  17. Gruber U (1986) Podarcis erhardii (Bedriaga, 1876) Ägäische Mauereidechse. In: Böhme W (ed) Handbuch der Reptilien und Amphibian Europas, Echsen 3. Aula, Wiesbaden, pp 25–49

    Google Scholar 

  18. Handrinos G, Akriotis T (1997) Birds of Greece. Helm and Black, London

    Google Scholar 

  19. Jaeger RG (1994) Transect sampling. In: Heyer WR, Donnelly MA, McDiarmin RW, Hayek LC, Foster MC (eds) Measuring and monitoring biological diversity. Smithsonian Institution Press, Washington, pp 103–107

    Google Scholar 

  20. Jennings WB, Thompson GG (1999) Territorial behavior in the Australian scincid lizard Ctenotus fallens. Herpetologica 55:352–361

    Google Scholar 

  21. Jenssen TA, Nunez SC (1998) Spatial and breeding relationships of the lizard, Anolis carolinensis: evidence of intra-sexual selection. Behavior 135:981–1003

    Google Scholar 

  22. Jenssen TA, Marcellini DL, Buhlmann KA, Goforth PH (1989) Differential infanticide by adult curly-tailed lizards, Leiocephalus schreibersi. Anim Behav 38:1054–1061

    Article  Google Scholar 

  23. Lack D (1954) The natural regulation of animal numbers. Clarendon, Oxford

    Google Scholar 

  24. Langkilde T, Shine R (2007) Interspecific conflict in lizards: social dominance depends upon an individual’s species not its body size. Austral Ecol 32:869–877

    Article  Google Scholar 

  25. Le Galliard JF, Ferrière R, Clobert J (2005) Juvenile growth and survival under dietary restriction: are males and females equal? Oikos 111:368–376

    Article  Google Scholar 

  26. Lomolino MV (2005) Body size evolution in insular vertebrates: generality of the island rule. J Biogeogr 32:1683–1699

    Article  Google Scholar 

  27. Markwell TJ, Daugherty CH (2002) Invertebrate and lizard abundance is greater on seabird-inhabited islands than on seabird-free islands in the Marlborough Sounds, New Zealand. Ecoscience 9:293–299

    Google Scholar 

  28. Meiri S (2007) Size evolution in island lizards. Glob Ecol Biogeogr 16:702–708

    Article  Google Scholar 

  29. Meiri S (2008) Evolution and ecology of lizard body sizes. Glob Ecol Biogeogr 17:724–724

    Article  Google Scholar 

  30. Meiri S, Dayan T, Simberloff D (2004) Body size of insular carnivore: little support for the island rule. Am Nat 163:469–479

    PubMed  Article  Google Scholar 

  31. Meiri S, Dayan T, Simberloff D (2005) Area, isolation and body size evolution in insular carnivores. Ecol Lett 8:1211–1217

    Article  Google Scholar 

  32. Melton RH (1982) Body size and island Peromyscus: a pattern and a hypothesis. Evol Theor 6:113–126

    Google Scholar 

  33. Olsson M, Wapstra E, Olofsson C (2002) Offspring size–number strategies: experimental manipulation of offspring size in a viviparous lizard (Lacerta vivipara). Funct Ecol 16:135–140

    Article  Google Scholar 

  34. Pafilis P, Valakos ED, Foufopoulos J (2005) Comparative postautotomy tail activity in six Mediterranean lacertid species. Physiol Biochem Zool 78:828–838

    PubMed  Article  Google Scholar 

  35. Pafilis P, Pérez-Mellado V, Valakos ED (2008) Post autotomy tail activity in Balearic wall lizard, Podarcis lilfordi. Naturwissenschaften 95:217–221

    PubMed  Article  CAS  Google Scholar 

  36. Pafilis P, Foufopoulos J, Poulakakis N, Lymberakis P, Valakos ED (2009) Tail shedding in island lizards [Lacertidae, Reptilia]: Decline of antipredator defenses in relaxed predation environments. Evolution 63:1262–1278

    PubMed  Article  Google Scholar 

  37. Pérez-Mellado V, Corti C, LoCascio P (1997) Tail autotomy and extinction in Mediterranean lizards. A preliminary study of continental and insular populations. J Zool 243:553–541

    Google Scholar 

  38. Pianka ER (1970) Comparative autecology of the lizard Cnemidophorus tigris in different parts of its geographic range. Ecology 51:703–720

    Article  Google Scholar 

  39. Polis GA, Myers CA (1985) A survey of intraspecific predation among reptiles and amphibians. J Herpetol 19:99–107

    Article  Google Scholar 

  40. Polis GA, Hurd SD (1996) Linking marine and terrestrial food webs: allochthonous input from the ocean supports high secondary productivity on small islands and coastal land communities. Am Nat 147:396–423

    Article  Google Scholar 

  41. Raia P, Meiri S (2006) The island rule in large mammals: paleontology meets ecology. Evolution 60:1731–1742

    PubMed  Google Scholar 

  42. Sadek RA (1981) The diet of the Madeiran lizard Lacerta dugesii. Zool J Linn Soc 73:313–341

    Article  Google Scholar 

  43. Salvador A (1986) Podarcis lilfordi (Gunther, 1874)- Balearen- Eidechse. In: Boehme W (ed) Handbuch der Reptilien und Amphibien Europas 2, Echsen 3. Aula, Wiesbaden, pp 83–110

    Google Scholar 

  44. Sanchez-Piñero F, Polis GA (2000) Bottom-up dynamics of allochthonous input: direct and indirect effects of seabirds on islands. Ecology 81:3117–3132

    Google Scholar 

  45. Sinervo B (1993) The effect of offspring size on physiology and life history: Manipulation of size using allometric engineering. Bioscience 43:210–218

    Article  Google Scholar 

  46. Sinervo B, Svensson E, Comendant T (2000) Density cycles and an offspring quantity and quality game driven by natural selection. Nature 406:985–988

    PubMed  Article  CAS  Google Scholar 

  47. Smith RJ (1999) Statistics of sexual size dimorphism. J Hum Evol 36:423–459

    PubMed  Article  CAS  Google Scholar 

  48. Sobey DG, Kenworthy JB (1979) The relationship between herring gulls and the vegetation of their breeding colonies. J Ecol 67:469–496

    Article  CAS  Google Scholar 

  49. Sondaar PY (1977) Insularity and its effects on mammal evolution. In: Hecht MK, Goody PC, Hecht BM (eds) Major patterns of vertebrate evolution. Plenum, New York, pp 671–707

    Google Scholar 

  50. Stamps JA, Tanaka S (1981) The influence of food and water on growth rates in a tropical lizard (Anolis aeneus). Ecology 62:33–40

    Article  Google Scholar 

  51. Turner FB, Medica PA, Jennrich RI, Maza BG (1982) Frequencies of broken tails among Uta stansburiana in southern Nevada and a test of the predation hypothesis. Copeia 1982:835–840

    Article  Google Scholar 

  52. Valakos ED, Pafilis P, Sotiropoulos K, Lymberakis P, Maragou P, Foufopoulos J (2008) The amphibians and reptiles of Greece. Edition Chimaira, Frankfurt am Main

    Google Scholar 

  53. Vervust B, Grbac I, Van Damme R (2007) Differences in morphology, performance and behaviour between recently diverged populations of Podarcis sicula mirror differences in predation pressure. Oikos 116:1343–1352

    Article  Google Scholar 

  54. Wagner JD, Wise DH (1996) Cannibalism regulates densities of young wolf spiders: evidence from field and laboratory experiments. Ecology 77:639–652

    Article  Google Scholar 

  55. Wu Z, Li Y, Murray BR (2006) Insular shifts in body size of rice frogs in the Zhoushan Archipelago, China. J Anim Ecol 75:1071–1080

    PubMed  Article  Google Scholar 

Download references

Acknowledgements

The study is in full compliance with Greek legislation for the Protection of Wildlife and Environment and was approved by the officer responsible for the well-being of study animals in the University of Athens. All animals were released into the wild after the end of the study. We are grateful to Wolfgang Böhme for offering access to the herpetological collections of the AKZM in Bonn and to our skipper Kyriakos Antonopoulos for local transportation. We also thank P. Lymberakis for map preparation.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Panayiotis Pafilis.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pafilis, P., Meiri, S., Foufopoulos, J. et al. Intraspecific competition and high food availability are associated with insular gigantism in a lizard. Naturwissenschaften 96, 1107–1113 (2009). https://doi.org/10.1007/s00114-009-0564-3

Download citation

Keywords

  • Podarcis gaigeae
  • Insularity
  • Cannibalism
  • Seabird subsidy
  • Population density