, Volume 96, Issue 2, pp 315–319 | Cite as

Scent of a queen—cuticular hydrocarbons specific for female reproductives in lower termites

  • Tobias WeilEmail author
  • Katharina Hoffmann
  • Johannes Kroiss
  • Erhard Strohm
  • Judith Korb
Short Communication


In social insects, it is assumed that signals of the queen inform nestmates about her reproductive status. Thus, workers forego their own reproduction if the queen signals high fertility. In hemimetabolous termites, little is known about reproductive inhibition, but evidence exists for a royal-pair control. Workers of lower termites exhibit a high developmental flexibility and are potentially able to become reproductives, but the presence of a fertile reproductive restrains them from reaching sexual maturity. The nature of this control, however, remains unknown. Here, we report on qualitative differences in cuticular hydrocarbon profiles between queens and workers of the basal drywood termite Cryptotermes secundus. Queens were characterized by a shift to long-chained and branched hydrocarbons. Most remarkably, similar chemical patterns are regarded as fertility cues of reproductives in social Hymenoptera. This might suggest that both groups of social insects convergently evolved similar chemical signatures. The present study provides deeper insights into how termites might have socially exploited these signatures from sexual communication in their cockroach-like ancestor.


Termites Cuticular hydrocarbons Fertility signals Chemical communication Queen signal 



We would like to thank Henriette Seichter for her help collecting termites. Parks and Wildlife Commission and Environment Australia gave permission to collect and export the termites. The experiments comply with the current laws of the country in which they were performed. This work was supported by a Deutsche Forschungsgemeinschaft (DFG) grant to Michael Rehli and Judith Korb.

Supplementary material

114_2008_475_MOESM1_ESM.doc (52 kb)
Supplementary Table 1 Comparison of the 25 caste-specific compounds (according to MCA analysis) using Mann–Whitney U tests. (DOC 52.5KB)


  1. Bagneres A, Riviere G, Clement J (1998) Artificial neural network modeling of caste odor discrimination based on cuticular hydrocarbons in termites. Chemoecology 8:201–209CrossRefGoogle Scholar
  2. Bordereau C (1985) The role of pheromones in termite caste differentiation. In: Watson J, Okot-Kober B, Noirot C (eds) Caste differentiation in social insects. Pergamon, Oxford, pp 221–226Google Scholar
  3. Brent CS, Schal C, Vargo EL (2005) Endocrine changes in maturing primary queens of Zootermopsis angusticollis. J Insect Physiol 51:1200–1209PubMedCrossRefGoogle Scholar
  4. Carlson DA, Bernier UR, Sutton BD (1998) Elution patterns from capillary GC for methyl-branched alkanes. J Chem Ecol 24:1845–1865CrossRefGoogle Scholar
  5. Cuvillier-Hot V, Cobb M, Malosse C, Peeters C (2001) Sex, age and ovarian activity affect cuticular hydrocarbons in Diacamma ceylonense, a queenless ant. J Insect Physiol 47:485–493PubMedCrossRefGoogle Scholar
  6. Cuvillier-Hot V, Renault V, Peeters C (2005) Rapid modification in the olfactory signal of ants following a change in reproductive status. Naturwissenschaften 92:73–77PubMedCrossRefGoogle Scholar
  7. Dietemann V, Peeters C, Liebig J, Thivet V, Hölldobler B (2003) Cuticular hydrocarbons mediate discrimination of reproductives and nonreproductives in the ant Myrmecia gulosa. Proc Natl Acad Sci U S A 100:10341–10346PubMedCrossRefGoogle Scholar
  8. Dronnet S, Lohou C, Christides JP, Bagneres AG (2006) Cuticular hydrocarbon composition reflects genetic relationship among colonies of the introduced termite Reticulitermes santonensis feytaud. J Chem Ecol 32:1027–1042PubMedCrossRefGoogle Scholar
  9. Eliyahu D, Nojima S, Capracotta SS, Comins DL, Schal C (2008) Identification of cuticular lipids eliciting interspecific courtship in the German cockroach, Blattella germanica. Naturwissenschaften 95:403–412PubMedCrossRefGoogle Scholar
  10. Grassé PP (1982) Termitologia: anatomie, physiologie, reproduction des termites. Masson, ParisGoogle Scholar
  11. Hartmann A, D’Ettorre P, Jones GR, Heinze J (2005) Fertility signaling—the proximate mechanism of worker policing in a clonal ant. Naturwissenschaften 92:282–286PubMedCrossRefGoogle Scholar
  12. Haverty M, Grace J, Nelson L, Yamamoto R (1996) Intercaste, intercolony, and temporal variation in cuticular hydrocarbons of Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae). J Chem Ecol 22:1813–1834CrossRefGoogle Scholar
  13. Haverty M, Collins M, Nelson L, Thorne BL (1997) Cuticular hydrocarbons of termites of the British Virgin Islands. J Chem Ecol 23:927–964CrossRefGoogle Scholar
  14. Heinze J, Stengl B, Sledge M (2002) Worker rank, reproductive status and cuticular hydrocarbon signature in the ant, Pachycondyla cf. inversa. Behav Ecol Sociobiol 52:59–65CrossRefGoogle Scholar
  15. Howard R, Blomquist GJ (1982) Chemical ecology and biochemistry of insect hydrocarbons. Annu Rev Entomol 27:149–172CrossRefGoogle Scholar
  16. Howard R, McDaniel C, Nelson D, Blomquist G, Gelbaum L, Zalkow L (1982) Cuticular Hydrocarbons of Reticulitermes virginicus (Banks) and their role as potential species- and caste-recognition cues. J Chem Ecol 8:1227–1239CrossRefGoogle Scholar
  17. Inward D, Beccaloni G, Eggleton P (2007) Death of an order: a comprehensive molecular phylogenetic study confirms that termites are eusocial cockroaches. Biol Lett 3:331–335PubMedCrossRefGoogle Scholar
  18. Keller L, Nonacs P (1993) The role of queen pheromones in social insects: queen control or queen signal? Anim Behav 45:787–794CrossRefGoogle Scholar
  19. Korb J (2005) Regulation of sexual development in the basal termite Cryptotermes secundus: mutilation, pheromonal manipulation or honest signal? Naturwissenschaften 92:45–49PubMedCrossRefGoogle Scholar
  20. Korb J, Hartfelder K (2008) Life history and development—a framework for understanding developmental plasticity in lower termites. Biol Rev 83:295–313PubMedCrossRefGoogle Scholar
  21. Liebig J, Peeters C, Oldham N, Markstädter C, Hölldobler B (2000) Are variations in cuticular hydrocarbons of queens and workers a reliable signal of fertility in the ant Harpegnathos saltator? Proc Natl Acad Sci U S A 97:4124–4131PubMedCrossRefGoogle Scholar
  22. Lommelen E, Johnson CA, Drijfhout FP, Billen J, Wenseleers T, Gobin B (2006) Cuticular hydrocarbons provide reliable cues of fertility in the ant Gnamptogenys striatula. J Chem Ecol 32:2023–2034PubMedCrossRefGoogle Scholar
  23. Lüscher M (1974) Kasten und Kastendifferenzierung bei niederen Termiten. In: Schmidt G (ed) Sozialpolymorphismus bei Insekten. Wissenschaftliche Verlagsgesellschaft, Stuttgart, pp 694–793Google Scholar
  24. Noirot C (1990) Sexual castes and reproductive strategies in termites. In: Engels W (ed) An evolutionary approach to castes and reproduction. Springer, Berlin, pp 5–35Google Scholar
  25. Park YI, Bland JM, Raina AK (2004) Factors affecting post-flight behavior in primary reproductives of the Formosan subterranean termite, Coptotermes formosanus (Isoptera: Rhinotermitidae). J Insect Physiol 50:539–546PubMedCrossRefGoogle Scholar
  26. Peeters C, Monnin T, Malosse C (1999) Cuticular hydrocarbons correlated with reproductive status in a queenless ant. Proc R Soc Lond B 266:1323–1327CrossRefGoogle Scholar
  27. Sevala V, Bagneres A, Kuenzli M, Blomquist G, Schal C (2000) Cuticular hydrocarbons of the dampwood termite, Zootermopsis nevadensis: caste differences and role of lipophorin in transport of hydrocarbons and hydrocarbon metabolites. J Chem Ecol 26:765–789CrossRefGoogle Scholar
  28. Sledge MF, Trinca I, Massolo A, Boscaro F, Turillazzi S (2004) Variation in cuticular hydrocarbon signatures, hormonal correlates and establishment of reproductive dominance in a polistine wasp. J Insect Physiol 50:73–83PubMedCrossRefGoogle Scholar
  29. Sramkova A, Schulz C, Twele R, Francke W, Ayasse M (2008) Fertility signals in the bumblebee Bombus terrestris (Hymenoptera: Apidae). Naturwissenschaften 95:515–522PubMedCrossRefGoogle Scholar
  30. Weil T, Rehli M, Korb J (2007) Molecular basis for the reproductive division of labour in a lower termite. BMC Genomics 8:198.1–198.9CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Tobias Weil
    • 1
    • 3
    Email author
  • Katharina Hoffmann
    • 2
  • Johannes Kroiss
    • 1
  • Erhard Strohm
    • 1
  • Judith Korb
    • 2
  1. 1.Biology IUniversity of RegensburgRegensburgGermany
  2. 2.Behavioral BiologyUniversity of OsnabrueckOsnabrueckGermany
  3. 3.Department of Hematology and OncologyUniversity HospitalRegensburgGermany

Personalised recommendations